Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.131
Filtrar
1.
J Comp Neurol ; 532(5): e25620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733146

RESUMEN

We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.


Asunto(s)
Ganglios Basales , Vías Nerviosas , Animales , Ganglios Basales/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/química , Masculino , Neuronas/metabolismo , Globo Pálido/metabolismo , Globo Pálido/química , Globo Pálido/anatomía & histología
2.
Acta Neurochir (Wien) ; 166(1): 217, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748304

RESUMEN

PURPOSE: To assess whether diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) metrics could preoperatively predict the clinical outcome of deep brain stimulation (DBS) in patients with Parkinson's disease (PD). METHODS: In this single-center retrospective study, from September 2021 to March 2023, preoperative DTI and GQI examinations of 44 patients who underwent DBS surgery, were analyzed. To evaluate motor functions, the Unified Parkinson's Disease Rating Scale (UPDRS) during on- and off-medication and Parkinson's Disease Questionnaire-39 (PDQ-39) scales were used before and three months after DBS surgery. The study population was divided into two groups according to the improvement rate of scales: ≥ 50% and < 50%. Five target regions, reported to be affected in PD, were investigated. The parameters having statistically significant difference were subjected to a receiver operating characteristic (ROC) analysis. RESULTS: Quantitative anisotropy (qa) values from globus pallidus externus, globus pallidus internus (qa_Gpi), and substantia nigra exhibited significant distributional difference between groups in terms of the improvement rate of UPDRS-3 scale during on-medication (p = 0.003, p = 0.0003, and p = 0.0008, respectively). In ROC analysis, the best parameter in predicting DBS response included qa_Gpi with a cut-off value of 0.01370 achieved an area under the ROC curve, accuracy, sensitivity, and specificity of 0.810, 73%, 62.5%, and 85%, respectively. Optimal cut-off values of ≥ 0.01864 and ≤ 0.01162 yielded a sensitivity and specificity of 100%, respectively. CONCLUSION: The imaging parameters acquired from GQI, particularly qa_Gpi, may have the ability to non-invasively predict the clinical outcome of DBS surgery.


Asunto(s)
Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Resultado del Tratamiento , Globo Pálido/diagnóstico por imagen , Valor Predictivo de las Pruebas
3.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696609

RESUMEN

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Hierro/metabolismo , Hierro/análisis , Preescolar , Mapeo Encefálico/métodos , Sustancia Blanca/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen
4.
Artículo en Inglés | MEDLINE | ID: mdl-38617832

RESUMEN

Clinical vignette: We present the case of a patient who developed intra-operative pneumocephalus during left globus pallidus internus deep brain stimulation (DBS) placement for Parkinson's disease (PD). Microelectrode recording (MER) revealed that we were anterior and lateral to the intended target. Clinical dilemma: Clinically, we suspected brain shift from pneumocephalus. Removal of the guide-tube for readjustment of the brain target would have resulted in the introduction of movement resulting from brain shift and from displacement from the planned trajectory. Clinical solution: We elected to leave the guide-tube cannula in place and to pass the final DBS lead into a channel that was located posterior-medially from the center microelectrode pass. Gap in knowledge: Surgical techniques which can be employed to minimize brain shift in the operating room setting are critical for reduction in variation of the final DBS lead placement. Pneumocephalus after dural opening is one potential cause of brain shift. The recognition that the removal of a guide-tube cannula could worsen brain shift creates an opportunity for an intraoperative team to maintain the advantage of the 'fork' in the brain provided by the initial procedure's requirement of guide-tube placement.


Asunto(s)
Estimulación Encefálica Profunda , Neumocéfalo , Humanos , Estimulación Encefálica Profunda/efectos adversos , Neumocéfalo/diagnóstico por imagen , Neumocéfalo/etiología , Neumocéfalo/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Globo Pálido/diagnóstico por imagen , Globo Pálido/cirugía , Movimiento
5.
J Neurophysiol ; 131(5): 914-936, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596834

RESUMEN

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.


Asunto(s)
Potenciales Postsinápticos Inhibidores , Neuronas , Optogenética , Animales , Ratones , Neuronas/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/citología , Globo Pálido/fisiología , Globo Pálido/citología , Potenciales de Acción/fisiología , Masculino , Ratones Endogámicos C57BL , Femenino , Vías Nerviosas/fisiología , Sinapsis/fisiología
6.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608373

RESUMEN

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Asunto(s)
Ganglios Basales , Estimulación Encefálica Profunda , Potenciales Evocados , Enfermedad de Parkinson , Estimulación Encefálica Profunda/métodos , Humanos , Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Potenciales Evocados/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Animales , Globo Pálido/fisiología , Núcleo Subtalámico/fisiología
7.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651310

RESUMEN

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Asunto(s)
Ganglios Basales , Distonía , Corteza Motora , Vías Nerviosas , Trastornos Parkinsonianos , Ratas Long-Evans , Animales , Corteza Motora/fisiopatología , Corteza Motora/patología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/patología , Ratas , Vías Nerviosas/fisiopatología , Distonía/fisiopatología , Distonía/patología , Distonía/etiología , Ganglios Basales/patología , Masculino , Globo Pálido/patología , Modelos Animales de Enfermedad
10.
J Clin Neurosci ; 123: 196-202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604023

RESUMEN

BACKGROUND: Patients with Parkinson's Disease (PD) who receive either asleep image-guided subthalamic nucleus deep brain stimulation (DBS) or the traditional awake technique have comparable motor outcomes. However, there are fewer studies regarding which technique should be chosen for globus pallidus internus (GPi) DBS. This systematic review and meta-analysis aims to compare the accuracy of lead placement and motor outcomes of asleep versus awake GPi DBS PD population. METHODS: We systematically searched PubMed, Embase, and Cochrane for studies comparing asleep vs. awake GPi DBS lead placement in patients with PD. Outcomes were spatial accuracy of lead placement, measured by radial error between intended and actual location, motor improvement measured using (UPDRS III), and postoperative stimulation parameters. Statistical analysis was performed with Review Manager 5.1.7. and OpenMeta [Analyst]. RESULTS: Three studies met inclusion criteria with a total of 247 patients. Asleep DBS was used to treat 192 (77.7 %) patients. Follow-up ranged from 6 to 48 months. Radial error was not statistically different between groups (MD -0.49 mm; 95 % CI -1.0 to 0.02; I2 = 86 %; p = 0.06), with a tendency for higher target accuracy with the asleep technique. There was no significant difference between groups in change on motor function, as measured by UPDRS III, from pre- to postoperative (MD 8.30 %; 95 % CI -4.78 to 21.37; I2 = 67 %, p = 0.2). There was a significant difference in postoperative stimulation voltage, with the asleep group requiring less voltage than the awake group (MD -0.27 V; 95 % CI -0.46 to - 0.08; I2 = 0 %; p = 0.006). CONCLUSION: Our meta-analysis indicates that asleep image-guided GPi DBS presents a statistical tendency suggesting superior target accuracy when compared with the awake standard technique. Differences in change in motor function were not statistically significant between groups.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Enfermedad de Parkinson , Vigilia , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/cirugía , Globo Pálido/cirugía , Vigilia/fisiología
11.
Clin Imaging ; 109: 110140, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574605

RESUMEN

PURPOSE: Gadolinium deposition has been reported in several normal anatomical structures in the brain after repeated administration of intravenous gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI). This study presents preliminary results to see if there is any gadolinium deposition in the dentate nucleus and globus pallidus after using intrathecal GBCAs. METHODS: Between November 2018 and November 2020, 29 patients who underwent intrathecal contrast-enhanced MR cisternography with the suspicion of rhinorrhea were included in this prospective study. In contrast-enhanced MR cisternography, gadoterate meglumine was administered by intrathecal injection at a dose of 1 ml. One month later, patients had a control MRI with 3D T1 SPACE fat-saturated (FS) and susceptibility weighted images (SWI) sequences. The ratio of dentate nucleus signal intensity to middle cerebellar peduncle signal intensity (DN/MCP ratio) and the ratio of globus pallidus signal intensity to thalamus signal intensity (GP/T ratio) were calculated using region of interest (ROI) on pre-contrast and control MRI sequences. RESULTS: There was no significant difference for DN/MCP ratio and GP/T ratio on 3D T1 SPACE FS and SWI sequences after intrathecal GBCAs administration compared to baseline MRI. CONCLUSION: Administration of intrathecal GBCAs did not cause a measurable change in the signal intensity of the dentate nucleus and globus pallidus after a single injection.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Humanos , Gadolinio , Globo Pálido/diagnóstico por imagen , Globo Pálido/patología , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/patología , Estudios Prospectivos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Gadolinio DTPA
12.
Mult Scler Relat Disord ; 86: 105576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579567

RESUMEN

OBJECTIVES: To explore structural and functional alterations of external (GPe) and internal (GPi) globus pallidus in people with multiple sclerosis (pwMS) compared to healthy controls (HC) and analyze their relationship with measures of clinical disability, motor and cognitive impairment. METHODS: Sixty pwMS and 30 HC comparable for age and sex underwent 3.0T MRI, including conventional, diffusion tensor MRI and resting state (RS) functional MRI. Expanded Disability Status Scale (EDSS) scores were rated and timed 25-foot walk (T25FW) test, nine-hole peg test (9HPT), and paced auditory serial addition test (PASAT) were administered. Two operators segmented the GP into GPe and GPi. Volumes, T1/T2 ratio, diffusivity indices and seed-based RS functional connectivity (FC) of the GP and its components were assessed. RESULTS: PwMS had no atrophy or altered diffusivity measures of the GP. Compared to HC, pwMS had higher T1/T2 ratio in both GP regions, which correlated with EDSS score (r = 0.26-0.39, p = 0.01-0.05). RS FC analysis highlighted component-specific functional alterations in pwMS: the GPe had decreased RS FC with fronto-parietal cortices, whereas the GPi had decreased intra-GP RS FC and increased RS FC with the thalamus. Worse EDSS, 9HPT, T25FW and PASAT scores were associated with GP RS FC modifications (r=-0.51‒0.51, p < 0.001). CONCLUSIONS: Structural GP involvement in MS was homogeneous across its portions. Increased T1/T2 ratio values, possibly representing iron accumulation, were related to more severe disability. RS FC alterations of the GPe and GPi were consistent with their roles within the basal ganglia network and correlated with worse functional status, suggesting less efficient communication between structures.


Asunto(s)
Globo Pálido , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Evaluación de la Discapacidad
14.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38484735

RESUMEN

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Asunto(s)
Ganglios Basales , Pez Cebra , Animales , Pez Cebra/genética , Ganglios Basales/fisiología , Cuerpo Estriado , Globo Pálido/fisiología , Animales Modificados Genéticamente , Mamíferos , Vías Nerviosas/fisiología
15.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38456947

RESUMEN

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Enfermedad de Parkinson/terapia , Electrodos , Globo Pálido , Electrodos Implantados
16.
J Neurol Sci ; 459: 122970, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520940

RESUMEN

BACKGROUND: Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS: We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS: Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION: While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Humanos , Distonía/genética , Distonía/terapia , Estudios Retrospectivos , Resultado del Tratamiento , Trastornos Distónicos/genética , Trastornos Distónicos/terapia , Globo Pálido , Chaperonas Moleculares
17.
Clin Neurophysiol ; 162: 31-40, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555665

RESUMEN

OBJECTIVE: Low-frequency 4-12 Hz pallidal oscillations are being considered as potential physiomarkers for dystonia. We suggest investigating the multifractal properties of pallidal activity as an additional marker. METHODS: We employed local field potentials (LFP) recordings from 23 patients with dystonia who were undergoing deep brain stimulation (DBS) surgery to explore the connection between disease severity and the multifractal characteristics of pallidal activity. Furthermore, we performed an analysis of LFP recordings from four patients, following the externalization of DBS lead electrodes, to investigate the impact of DBS and neck muscle vibration on multifractal parameters. RESULTS: Greater dystonia severity exhibited a correlation with a narrower multifractal spectrum width but higher multifractal spectral asymmetry. Both GPi DBS and muscle vibration in dystonia patients expanded the multifractal spectrum width while restoring multifractal spectral symmetry. Notably, the threshold peak intensities for an increase in multifractal spectrum width substantially overlapped with the optimal volume of tissue activated. A broader multifractal spectrum during DBS corresponded to more favorable clinical outcomes. CONCLUSIONS: Multifractal properties of pallidal neuronal activity serve as indicators of neural dysfunction in dystonia. SIGNIFICANCE: These findings suggest the potential of utilizing multifractal characteristics as predictive factors for the DBS outcome in dystonia.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Globo Pálido , Humanos , Masculino , Femenino , Distonía/fisiopatología , Distonía/terapia , Adulto , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Persona de Mediana Edad , Fractales , Adulto Joven , Anciano
18.
Parkinsonism Relat Disord ; 122: 106089, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460490

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus (GP) is an established therapy for Parkinson's disease (PD). Novel DBS devices can record local field potential (LFP) physiomarkers from the STN or GP. While beta (13-30 Hz) and gamma (40-90 Hz) STN and GP LFP oscillations correlate with PD motor severity and with therapeutic effects of treatments, STN-GP interactions in electrophysiology in patients with PD are not well characterized. METHODS: Simultaneous bilateral STN and GP LFPs were recorded in a patient with PD who received bilateral STN-DBS and GP-DBS. Power spectra in each target and STN-GP coherence were assessed in various ON- and OFF-levodopa and DBS states, both at rest and with voluntary movement. RESULTS: OFF-levodopa and OFF-DBS, beta peaks were present at bilateral STN and GP, coincident with prominent STN-GP beta coherence. Levodopa and dual-target-DBS (simultaneous STN-DBS and GP-DBS) completely suppressed STN-GP coherence. Finely-tuned gamma (FTG) activity at half the stimulation frequency (62.5 Hz) was seen in the STN during GP-DBS at rest. To assess the effects of movement on FTG activity, we recorded LFPs during instructed movement. We observed FTG activity in bilateral GP and bilateral STN during contralateral body movements while on GP-DBS and ON-levodopa. No FTG was seen with STN-DBS or dual-target-DBS. CONCLUSION: Dual-target-DBS and levodopa suppressed STN-GP coherence. FTG throughout the basal ganglia was induced by GP-DBS in the presence of levodopa and movement. This bilateral STN-FTG and GP-FTG corresponded with the least severe bradykinesia state, suggesting a pro-kinetic role for FTG.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Masculino , Persona de Mediana Edad , Levodopa/farmacología , Levodopa/administración & dosificación , Antiparkinsonianos/uso terapéutico , Anciano , Femenino
19.
J Neurosci Methods ; 4012024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38486714

RESUMEN

Background: This work presents a toolbox that implements methodology for automated classification of diverse neural responses to optogenetic stimulation or other changes in conditions, based on spike train recordings. New Method: The toolbox implements what we call the Spike Train Response Classification algorithm (STReaC), which compares measurements of activity during a baseline period with analogous measurements during a subsequent period to identify various responses that might result from an event such as introduction of a sustained stimulus. The analyzed response types span a variety of patterns involving distinct time courses of increased firing, or excitation, decreased firing, or inhibition, or combinations of these. Excitation (inhibition) is identified from a comparative analysis of the spike density function (interspike interval function) for the baseline period relative to the corresponding function for the response period. Results: The STReaC algorithm as implemented in this toolbox provides a user-friendly, tunable, objective methodology that can detect a variety of neuronal response types and associated subtleties. We demonstrate this with single-unit neural recordings of rodent substantia nigra pars reticulata (SNr) during optogenetic stimulation of the globus pallidus externa (GPe). Comparison with existing methods: In several examples, we illustrate how the toolbox classifies responses in situations in which traditional methods (spike counting and visual inspection) either fail to detect a response or provide a false positive. Conclusions: The STReaC toolbox provides a simple, efficient approach for classifying spike trains into a variety of response types defined relative to a period of baseline spiking.


Asunto(s)
Algoritmos , Globo Pálido , Globo Pálido/fisiología
20.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38514185

RESUMEN

The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.


Asunto(s)
Electrones , Núcleos Talámicos Intralaminares , Neuronas/fisiología , Globo Pálido , Microscopía Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA