Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 131(5): 914-936, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596834

RESUMEN

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.


Asunto(s)
Potenciales Postsinápticos Inhibidores , Neuronas , Optogenética , Animales , Ratones , Neuronas/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/citología , Globo Pálido/fisiología , Globo Pálido/citología , Potenciales de Acción/fisiología , Masculino , Ratones Endogámicos C57BL , Femenino , Vías Nerviosas/fisiología , Sinapsis/fisiología
2.
Neuropharmacology ; 232: 109527, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011784

RESUMEN

Parvalbumin-expressing dorsal striatal fast-spiking interneurons, comprising ∼1% of the total dorsal striatal neuronal population, are necessary for the expression of compulsive-like ethanol consumption mice. Fast-spiking interneurons are driven to fire by glutamatergic inputs derived primarily from the cortex. However, these neurons also receive substantial GABAergic input from two sources: the globus pallidus and the reticular nucleus of the thalamus. How ethanol modulates inhibitory input onto fast-spiking neurons is unclear and, more broadly, alcohol effects on GABAergic synaptic transmission onto GABAergic interneurons are understudied. Examining this, we found that acute bath application of ethanol (50 mM) potentiated GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto fast-spiking interneurons in mouse of both sexes. This ethanol-induced potentiation required postsynaptic calcium and was not accompanied by a sustained change in presynaptic GABA release probability. Examining whether this ethanol effect persisted following chronic intermittent ethanol exposure, we found attenuated acute-ethanol potentiation of GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto striatal fast-spiking interneurons. These data underscore the impact of ethanol on GABAergic signaling in the dorsal striatum and support the notion that ethanol may disinhibit the dorsolateral striatum.


Asunto(s)
Cuerpo Estriado , Etanol , Neuronas GABAérgicas , Interneuronas , Animales , Femenino , Masculino , Ratones , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Etanol/administración & dosificación , Etanol/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Globo Pálido/citología , Globo Pálido/efectos de los fármacos , Interneuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Núcleos Talámicos/citología , Núcleos Talámicos/efectos de los fármacos , Núcleos Talámicos/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Calcio/metabolismo
3.
Sci Rep ; 11(1): 21395, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725371

RESUMEN

Recent studies have shown that temporal stability of the neuronal activity over time can be estimated by the structure of the spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was performed during the baseline period of a motivational visuomotor task in which monkeys had to apply different amounts of force to receive different amounts of reward. We found that the striatum and the STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates of intrinsic timescales are important in adding further constraints in the development of computational models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.


Asunto(s)
Ganglios Basales/fisiología , Cuerpo Estriado/fisiología , Red Nerviosa/fisiología , Núcleo Subtalámico/fisiología , Animales , Ganglios Basales/citología , Cognición , Cuerpo Estriado/citología , Globo Pálido/citología , Globo Pálido/fisiología , Macaca mulatta , Masculino , Red Nerviosa/citología , Núcleo Subtalámico/citología , Factores de Tiempo
4.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618556

RESUMEN

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Dopamina/deficiencia , Globo Pálido/fisiopatología , Neuronas/fisiología , Enfermedad de Parkinson/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Animales , Modelos Animales de Enfermedad , Dopamina/genética , Femenino , Globo Pálido/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiopatología , Sinapsis/fisiología
5.
Mol Neurobiol ; 58(8): 3729-3744, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33821423

RESUMEN

Specification of the progenitors' regional identity is a pivotal step during development of the cerebral cortex and basal ganglia. The molecular mechanisms underlying progenitor regionalization, however, are poorly understood. Here we showed that the transcription factor Vax1 was highly expressed in the developing subpallium. In its absence, the RNA-Seq analysis, in situ RNA hybridization, and immunofluorescence staining results showed that the cell proliferation was increased in the subpallium, but the neuronal differentiation was blocked. Moreover, the dLGE expands ventrally, and the vLGE, MGE, and septum get smaller. Finally, overexpressed VAX1 in the LGE progenitors strongly inhibits Gsx2 expression. Taken together, our findings show that Vax1 is crucial for subpallium regionalization by repressing Gsx2.


Asunto(s)
Cuerpo Estriado/embriología , Cuerpo Estriado/metabolismo , Globo Pálido/embriología , Globo Pálido/metabolismo , Proteínas de Homeodominio/biosíntesis , Neuropéptidos/biosíntesis , Animales , Cuerpo Estriado/citología , Globo Pálido/citología , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuropéptidos/genética
6.
J Neurosci ; 41(18): 3966-3987, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731445

RESUMEN

The classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and their roles in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting response of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson's disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson's disease that has not been previously considered. In sum, our results suggest that dSPN input to the GPe is a critical circuit component that is involved in the regulation of movement in both healthy and parkinsonian states.SIGNIFICANCE STATEMENT In the classic basal ganglia model, the striatum is described as a divergent structure: it controls motor and adaptive functions through two segregated, opposing output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal subpathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this subpathway undergoes changes in a Parkinson's disease model. In particular, our results suggest that the increase in strength of this subpathway contributes to the slowness or reduced movements observed in Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Globo Pálido/fisiología , Neostriado/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Globo Pálido/citología , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento/fisiología , Neostriado/citología , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Conejos
7.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731450

RESUMEN

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Asunto(s)
Globo Pálido/citología , Globo Pálido/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Ansiedad/psicología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Conducta Animal , Fenómenos Biomecánicos , Fenómenos Electrofisiológicos , Femenino , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Optogenética , Canales de Potasio con Entrada de Voltaje/genética , Receptores del Factor Natriurético Atrial/genética
8.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572077

RESUMEN

Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor-receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson's disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.


Asunto(s)
Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas del Receptor de Adenosina A2/farmacología , Agonistas del Receptor de Adenosina A2/uso terapéutico , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Regulación Alostérica/efectos de los fármacos , Animales , Astrocitos/metabolismo , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Globo Pálido/citología , Globo Pálido/diagnóstico por imagen , Globo Pálido/metabolismo , Humanos , Ligandos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Ratones , Núcleo Accumbens/citología , Núcleo Accumbens/diagnóstico por imagen , Núcleo Accumbens/metabolismo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Multimerización de Proteína/efectos de los fármacos , Ratas , Recompensa , Esquizofrenia/diagnóstico , Esquizofrenia/tratamiento farmacológico , Trastornos Relacionados con Sustancias/diagnóstico , Trastornos Relacionados con Sustancias/tratamiento farmacológico
9.
Neurobiol Dis ; 150: 105254, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33421565

RESUMEN

Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson's disease (PD). The knowledge of contribution of NMDA receptors to GPe function is limited. Here, we demonstrate that fast spiking neurons in the GPe express NMDA receptor currents sensitive to GluN2C/GluN2D-selective inhibitors and glycine site agonist with higher efficacy at GluN2C-containing receptors. Furthermore, using a novel reporter model, we demonstrate the expression of GluN2C subunits in PV neurons in the GPe which project to subthalamic nuclei. GluN2D subunit was also found to localize to PV neurons in GPe. Ablation of GluN2C subunit does not affect spontaneous firing of fast spiking neurons. In contrast, facilitating the function of GluN2C-containing receptors using glycine-site NMDA receptor agonists, D-cycloserine (DCS) or AICP, increased the spontaneous firing frequency of PV neurons in a GluN2C-dependent manner. Finally, we demonstrate that local infusion of DCS or AICP into the GPe improved motor function in a mouse model of PD. Together, these results demonstrate that GluN2C-containing receptors and potentially GluN2D-containing receptors in the GPe may serve as a therapeutic target for alleviating motor dysfunction in PD and related disorders.


Asunto(s)
Globo Pálido/metabolismo , Movimiento/fisiología , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cicloserina/farmacología , Modelos Animales de Enfermedad , Globo Pálido/citología , Ratones , Actividad Motora , Movimiento/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Núcleo Subtalámico
10.
Curr Biol ; 31(4): 707-721.e7, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33306949

RESUMEN

The basal ganglia (BG) inhibit movements through two independent circuits: the striatal neuron-indirect and the subthalamic nucleus-hyperdirect pathways. These pathways exert opposite effects onto external globus pallidus (GPe) neurons, whose functional importance as a relay has changed drastically with the discovery of two distinct cell types, namely the prototypic and the arkypallidal neurons. However, little is known about the synaptic connectivity scheme of different GPe neurons toward both motor-suppressing pathways, as well as how opposite changes in GPe neuronal activity relate to locomotion inhibition. Here, we optogenetically dissect the input organizations of prototypic and arkypallidal neurons and further define the circuit mechanism and behavioral outcome associated with activation of the indirect or hyperdirect pathways. This work reveals that arkypallidal neurons are part of a novel disynaptic feedback loop differentially recruited by the indirect or hyperdirect pathways and that broadcasts inhibitory control onto locomotion only when arkypallidal neurons increase their activity.


Asunto(s)
Globo Pálido/citología , Locomoción/fisiología , Vías Nerviosas , Sinapsis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas , Optogenética , Núcleo Subtalámico/citología
11.
Cereb Cortex ; 31(3): 1744-1762, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33230547

RESUMEN

Progenitors in the dorsal lateral ganglionic eminence (dLGE) are known to give rise to olfactory bulb (OB) interneurons and intercalated cells (ITCs) of the amygdala. The dLGE enriched transcription factor Sp8 is required for the normal generation of ITCs as well as OB interneurons, particularly the calretinin (CR)-expressing subtype. In this study, we used a genetic gain-of-function approach in mice to examine the roles Sp8 plays in controlling the development of dLGE-derived neuronal subtypes. Misexpression of Sp8 throughout the ventral telencephalic subventricular zone (SVZ) from early embryonic stages, led to an increased generation of ITCs which was dependent on Tshz1 gene dosage. Additionally, Sp8 misexpression impaired rostral migration of OB interneurons with clusters of CR interneurons seen in the SVZ along with decreased differentiation of calbindin OB interneurons. Sp8 misexpression throughout the ventral telencephalon also reduced ventral LGE neuronal subtypes including striatal projection neurons. Delaying Sp8 misexpression until E14-15 rescued the striatal and amygdala phenotypes but only partially rescued OB interneuron reductions, consistent with an early window of striatal and amygdala neurogenesis and ongoing OB interneuron generation at this late stage. Our results demonstrate critical roles for the timing and neuronal cell-type specificity of Sp8 expression in mouse LGE neurogenesis.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Globo Pálido/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Globo Pálido/embriología , Ratones , Células-Madre Neurales/metabolismo
12.
J Neurosci ; 40(41): 7855-7876, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32868462

RESUMEN

The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Parvalbúminas/genética , Animales , Axones/patología , Fenómenos Electrofisiológicos , Femenino , Globo Pálido/citología , Locomoción/fisiología , Masculino , Ratones , Red Nerviosa/citología , Optogenética , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/fisiología
13.
J Chem Neuroanat ; 109: 101851, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32717392

RESUMEN

In the current study, we use tyrosine hydroxylase (TH) immunohistochemistry to detail the nuclear parcellation and cellular morphology of neurons belonging to the catecholaminergic system in the brain of the Nile crocodile. In general, our results are similar to that found in another crocodilian (the spectacled caiman) and indeed other vertebrates, but certain differences of both evolutionary and functional significance were noted. TH immunopositive (TH+) neurons forming distinct nuclei were observed in the olfactory bulb (A16), hypothalamus (A11, A13-15), midbrain (A8-A10), pons (A5-A7) and medulla oblongata (area postrema, C1, C2, A1, A2), encompassing the more commonly observed nuclear complexes of this system across vertebrates. In addition, TH + neurons forming distinct nuclei not commonly identified in vertebrates were observed in the anterior olfactory nucleus, the pretectal nuclear complex, adjacent to the posterior commissure, and within nucleus laminaris, nucleus magnocellularis lateralis and the lateral vestibular nucleus. Palely stained TH + neurons were observed in some of the serotonergic nuclei, including the medial and lateral divisions of the superior raphe nucleus and the inferior raphe and inferior reticular nucleus, but not in other serotonergic nuclei. In birds, a high density of TH + fibres and pericellular baskets in the dorsal ventricular ridge marks the location of the nidopallium caudolaterale (NCL), a putative avian analogue of mammalian prefrontal cortex. In the dorsal ventricular ridge (DVR) of the crocodile a small region in the caudolateral anterior DVR (ADVRcl) revealed a slightly higher density of TH + fibres and some pericellular baskets (formed by only few TH + fibres). These results are discussed in an evolutionary and functional framework.


Asunto(s)
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Globo Pálido/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Caimanes y Cocodrilos , Animales , Encéfalo/citología , Forma de la Célula/fisiología , Globo Pálido/citología , Inmunohistoquímica , Red Nerviosa/citología , Neuronas/citología
14.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32707082

RESUMEN

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Asunto(s)
Orientación del Axón , Células-Madre Neurales/citología , Neuroglía/citología , Animales , Axones/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Espinas Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Globo Pálido/citología , Globo Pálido/crecimiento & desarrollo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Tractos Piramidales/citología , Tractos Piramidales/crecimiento & desarrollo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
15.
Sci Rep ; 9(1): 18092, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792286

RESUMEN

Short-term depression is a low-pass filter of synaptic information, reducing synaptic information transfer at high presynaptic firing frequencies. Consequently, during elevated presynaptic firing, little information passes to the postsynaptic neuron. However, many neurons fire at relatively high frequencies all the time. Does depression silence their synapses? We tested this apparent contradiction in the indirect pathway of the basal ganglia. Using numerical modeling and whole-cell recordings from single entopeduncular nucleus (EP) neurons in rat brain slices, we investigated how different firing rates of globus pallidus (GP) neurons affect information transmission to the EP. Whole-cell recordings showed significant variability in steady-state depression, which decreased as stimulation frequency increased. Modeling predicted that this variability would translate into different postsynaptic noise levels during constitutive presynaptic activity. Our simulations further predicted that individual GP-EP synapses mediate gain control. However, when we consider the integration of multiple inputs, the broad range of GP firing rates would enable different modes of information transmission. Finally, we predict that changes in dopamine levels can shift the action of GP neurons from rate coding to gain modulation. Our results thus demonstrate how short-term depression shapes information transmission in the basal ganglia in particular and via GABAergic synapses in general.


Asunto(s)
Neuronas GABAérgicas/fisiología , Globo Pálido/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Animales , Neuronas GABAérgicas/citología , Globo Pálido/citología , Modelos Neurológicos , Plasticidad Neuronal , Técnicas de Placa-Clamp , Ratas Wistar
16.
J Neurosci ; 39(36): 7206-7217, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31315945

RESUMEN

Adenosine 2A receptor (A2AR)-containing indirect medium spiny neurons (iMSNs) in the dorsomedial striatum (DMS) contribute to reward-seeking behaviors. However, those roles for ethanol-seeking behaviors remain unknown. To investigate ethanol-seeking behaviors, we used an ethanol-containing reward (10% ethanol and 10% sucrose solution; 10E10S). Upon conditioning with 10E10S, mice that initially only preferred 10% sucrose, not 10E10S, showed a stronger preference for 10E10S. Then, we investigated whether the manipulation of the DMS-external globus pallidus (GPe) iMSNs circuit alters the ethanol-containing reward (10E10S) seeking behaviors using the combination of pharmacologic and optogenetic approaches. DMS A2AR activation dampened operant conditioning-induced ethanol-containing reward, whereas A2AR antagonist abolished the effects of the A2AR agonist and restored ethanol-containing reward-seeking. Moreover, pre-ethanol exposure potentiated the A2AR-dependent reward-seeking. Interestingly, mice exhibiting ethanol-containing reward-seeking showed the reduction of the DMS iMSNs activity, suggesting that disinhibiting iMSNs decreases reward-seeking behaviors. In addition, we found that A2AR activation reversed iMSNs neural activity in the DMS. Similarly, optogenetic stimulation of the DMS-GPe iMSNs reduced ethanol-containing reward-seeking, whereas optogenetic inhibition of the DMS-GPe iMSNs reversed this change. Together, our study demonstrates that DMS A2AR and iMSNs regulate ethanol-containing reward-seeking behaviors.SIGNIFICANCE STATEMENT Our findings highlight the mechanisms of how operant conditioning develops the preference of ethanol-containing conditioned reward. Mice exhibiting ethanol-containing reward-seeking showed a reduction of the indirect medium spiny neuronal activity in the dorsomedial striatum. Pharmacological activation of adenosine A2A receptor (A2AR) or optogenetic activation of indirect medium spiny neurons dampened operant conditioned ethanol-containing reward-seeking, whereas inhibiting this neuronal activity restored ethanol-containing reward-seeking. Furthermore, repeated intermittent ethanol exposure potentiated A2AR-dependent reward-seeking. Therefore, our finding suggests that A2AR-containing indirect medium spiny neuronal activation reduces ethanol-containing reward-seeking, which may provide a potential therapeutic target for alcohol use disorder.


Asunto(s)
Alcoholismo/fisiopatología , Globo Pálido/fisiopatología , Neuronas/fisiología , Recompensa , Agonistas del Receptor de Adenosina A3/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Animales , Condicionamiento Operante , Etanol/farmacología , Globo Pálido/citología , Globo Pálido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Adenosina A2/metabolismo
17.
Cell Rep ; 27(11): 3182-3198.e9, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189104

RESUMEN

Variations in the human FTO gene have been linked to obesity and altered connectivity of the dopaminergic neurocircuitry. Here, we report that fat mass and obesity-associated protein (FTO) in dopamine D2 receptor-expressing medium spiny neurons (D2 MSNs) of mice regulate the excitability of these cells and control their striatopallidal globus pallidus external (GPe) projections. Lack of FTO in D2 MSNs translates into increased locomotor activity to novelty, associated with altered timing behavior, without impairing the ability to control actions or affecting reward-driven and conditioned behavior. Pharmacological manipulations of dopamine D1 receptor (D1R)- or D2R-dependent pathways in these animals reveal altered responses to D1- and D2-MSN-mediated control of motor output. These findings reveal a critical role for FTO to control D2 MSN excitability, their projections to the GPe, and behavioral responses to novelty.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Neuronas Dopaminérgicas/metabolismo , Conducta Exploratoria , Locomoción , Potenciales de Acción , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Neuronas Dopaminérgicas/fisiología , Femenino , Globo Pálido/citología , Globo Pálido/metabolismo , Globo Pálido/fisiología , Masculino , Ratones , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Recompensa
18.
Elife ; 72018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30566076

RESUMEN

Dopamine neurotransmission is suspected to play important physiological roles in multiple sparsely innervated brain nuclei, but there has not been a means to measure synaptic dopamine release in such regions. The globus pallidus externa (GPe) is a major locus in the basal ganglia that displays a sparse innervation of en passant dopamine axonal fibers. Due to the low levels of innervation that preclude electrochemical analysis, it is unknown if these axons engage in neurotransmission. To address this, we introduce an optical approach using a pH-sensitive fluorescent false neurotransmitter, FFN102, that exhibits increased fluorescence upon exocytosis from the acidic synaptic vesicle to the neutral extracellular milieu. In marked contrast to the striatum, FFN102 transients in the mouse GPe were spatially heterogeneous and smaller than in striatum with the exception of sparse hot spots. GPe transients were also significantly enhanced by high frequency stimulation. Our results support hot spots of dopamine release from substantia nigra axons.


Asunto(s)
Axones/fisiología , Dopamina/metabolismo , Globo Pálido/fisiología , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Axones/metabolismo , Ganglios Basales/citología , Ganglios Basales/metabolismo , Ganglios Basales/fisiología , Femenino , Globo Pálido/citología , Globo Pálido/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sustancia Negra/citología , Sustancia Negra/metabolismo , Sustancia Negra/fisiología , Transmisión Sináptica/genética
19.
Neurosci Bull ; 34(3): 405-418, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29508249

RESUMEN

The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.


Asunto(s)
Cuerpo Estriado/anatomía & histología , Globo Pálido/anatomía & histología , Tupaiidae/anatomía & histología , Acetilcolinesterasa/metabolismo , Animales , Mapeo Encefálico , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Globo Pálido/citología , Globo Pálido/metabolismo , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/metabolismo , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas
20.
Brain Struct Funct ; 223(6): 2685-2698, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29569009

RESUMEN

Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.


Asunto(s)
Amígdala del Cerebelo/citología , Hormona Liberadora de Corticotropina/metabolismo , Globo Pálido/citología , Neuronas/citología , Núcleo Hipotalámico Paraventricular/citología , Sinapsis/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Pirroles/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Transducción Genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA