Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790016

RESUMEN

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Asunto(s)
Quitinasas , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Triticum , Quitinasas/genética , Quitinasas/metabolismo , Resistencia a la Enfermedad/genética , Fusarium/genética , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Irán , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
2.
BMC Plant Biol ; 24(1): 339, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671375

RESUMEN

BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Inmunidad de la Planta , Zea mays , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Zea mays/inmunología , Zea mays/microbiología
3.
Sci Rep ; 14(1): 3530, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347004

RESUMEN

A series of novel azepine derivatives based on quinazolinone moiety was synthesized through the reaction of quinazolinone chalcones (2a-d) either with 2-amino aniline in acidic medium to give diazepines (3a-d) or with 2-aminophenol to offer oxazepine (4a-d). The structure of the synthesized compounds was confirmed via melting points, elemental analyses, and different spectroscopic techniques. Moreover, these newly compounds mode of action was investigated in-silico using molecular docking against the outer membrane protein A (OMPA), exo-1,3-beta-glucanase for their antimicrobial activity, and against Smoothened (SMO), transcription factor glioma-associated homology (SUFU/GLI-1), the main proteins of Hedgehog signaling pathway to inspect their anticancer potential. Our results showed that, diazepine (3a) and oxazepine (4a) offered the highest binding energy against the target OMPA/ exo-1,3-beta-glucanase proteins and exhibited the potent antimicrobial activities against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. Albicans and A. flavus. As well, diazepine (3a) and oxazepine (4a) achieved the best results among the other compounds, in their binding energy against the target SMO, SUFU/GLI-1 proteins. The in-vitro cytotoxic study was done for them on panel of cancer cell lines HCT-116, HepG2, and MCF-7 and normal cell line WI-38. Conclusively, it was revealed that molecular docking in-silico simulations and the in-vitro experiments were agreed. As a result, our findings elucidated that diazepine (3a) and oxazepine (4a), have the potential to be used as antimicrobial agents and as possible cancer treatment medications.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Oxazepinas , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Proteínas Hedgehog , Quinazolinonas/farmacología , Proliferación Celular , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Glucano 1,3-beta-Glucosidasa , Oxazepinas/farmacología , Estudios Prospectivos , Antiinfecciosos/farmacología , Antineoplásicos/química , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales
4.
FEBS J ; 291(9): 2009-2022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380733

RESUMEN

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Asunto(s)
Oligosacáridos , Streptomyces , beta-Glucanos , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato , beta-Glucanos/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/química , Secuencia de Aminoácidos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Concentración de Iones de Hidrógeno , Cinética
5.
Molecules ; 28(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375219

RESUMEN

Due to the limited availability of antifungal drugs, their relevant side effects and considering the insurgence of drug-resistant strains, novel antifungal agents are urgently needed. To identify such agents, we have developed an integrated computational and biological screening platform. We have considered a promising drug target in antifungal drug discovery (exo-1,3-ß-glucanase) and a phytochemical library composed of bioactive natural products was used. These products were computationally screened against the selected target using molecular docking and molecular dynamics techniques along with the evaluation of drug-like profile. We selected sesamin as the most promising phytochemical endowed with a potential antifungal profile and satisfactory drug-like properties. Sesamin was submitted to a preliminary biological evaluation to test its capability to inhibit the growth of several Candida species by calculating the MIC/MFC and conducting synergistic experiments with the marketed drug fluconazole. Following the screening protocol, we identified sesamin as a potential exo-1,3-ß-glucanase inhibitor, with relevant potency in inhibiting the growth of Candida species in a dose-dependent manner (MIC and MFC of 16 and 32 µg/mL, respectively). Furthermore, the combination of sesamin with fluconazole highlighted relevant synergistic effects. The described screening protocol revealed the natural product sesamin as a potential novel antifungal agent, showing an interesting predicted pharmacological profile, paving the way to the development of innovative therapeutics against fungal infections. Notably, our screening protocol can be helpful in antifungal drug discovery.


Asunto(s)
Antifúngicos , Sesamum , Antifúngicos/farmacología , Antifúngicos/química , Fluconazol/farmacología , Simulación del Acoplamiento Molecular , Glucano 1,3-beta-Glucosidasa/farmacología , Pruebas de Sensibilidad Microbiana , Candida , Fitoquímicos/farmacología , Farmacorresistencia Fúngica
6.
Nat Commun ; 13(1): 6003, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224193

RESUMEN

Smut fungi comprise one of the largest groups of fungal plant pathogens causing disease in all cereal crops. They directly penetrate host tissues and establish a biotrophic interaction. To do so, smut fungi secrete a wide range of effector proteins, which suppress plant immunity and modulate cellular functions as well as development of the host, thereby determining the pathogen's lifestyle and virulence potential. The conserved effector Erc1 (enzyme required for cell-to-cell extension) contributes to virulence of the corn smut Ustilago maydis in maize leaves but not on the tassel. Erc1 binds to host cell wall components and displays 1,3-ß-glucanase activity, which is required to attenuate ß-glucan-induced defense responses. Here we show that Erc1 has a cell type-specific virulence function, being necessary for fungal cell-to-cell extension in the plant bundle sheath and this function is fully conserved in the Erc1 orthologue of the barley pathogen Ustilago hordei.


Asunto(s)
Ustilago , beta-Glucanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Enfermedades de las Plantas/microbiología , Ustilago/metabolismo , Zea mays/metabolismo , beta-Glucanos/metabolismo
7.
Lett Appl Microbiol ; 75(2): 450-459, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35620862

RESUMEN

In this study, an endophytic Bacillus sp. strain (K7) was isolated from the medicinally important ornamental plant, Jasminum officinale. Biochemical analyses were conducted to evaluate the nature of the extracted product, which displayed strong anticandidal activity against Candida albicans (CA) SC5314, as evident from the results obtained in agar-cup diffusion tests, phase-contrast microscopy, scanning electron microscopy and minimum inhibitory concentration assays. After confirming the presence of the gene clusters encoding the lipopeptides iturins and fengycin in the genome of K7, their corresponding molecular ions were identified using MALDI-TOF-MS. 3D structures of the lipopeptides were downloaded from specific databases and molecular docking was performed against a vital CA enzyme, exo-1,3-beta-glucanase, involved in cell wall remodelling, adhesion to polymer materials and biofilm formation. The docking score of iturins was found to be -8·6 and -8·2 kcal mol-1 and for fengycin it was -9·4 kcal mol-1 , indicating a strong affinity of these cyclic lipopeptides towards exo-1,3-beta-glucanase. The combined in vitro and in silico anticandidal studies suggested that these secreted lipopeptides from Bacillus sp. may be used as potential therapeutics against opportunistic and complicated infections of CA.


Asunto(s)
Bacillus , Bacillus/metabolismo , Candida albicans/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Lipopéptidos/farmacología , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638559

RESUMEN

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and ß-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and ß-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Peroxisomas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Potyviridae , Triticum/inmunología , Triticum/virología , Quitinasas/metabolismo , Clorofila/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Oxidación-Reducción , Peroxidasas/metabolismo , Peroxisomas/genética , Peroxisomas/virología , Fenotipo , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Especies Reactivas de Oxígeno/metabolismo
9.
Carbohydr Polym ; 273: 118609, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561008

RESUMEN

Chitooligosaccharides (CHOS) with multiple biological activities are usually produced through enzymatic hydrolysis of chitosan or chitin. However, purification and recycling of the enzyme have largely limited the advancement of CHOS bioproduction. Here, we engineered a novel enzyme by fusing the native chitosanase Csn75 with a carbohydrate-binding module (CBM) that can specifically bind to curdlan. The recombinase Csn75-CBM was successfully expressed by Pichia pastoris and allowed one-step purification and immobilization in the chitosanase immobilized curdlan packed-bed reactor (CICPR), where a maximum adsorption capacity of 39.59 mg enzyme/g curdlan was achieved. CHOS with degrees of polymerization of 2-5 (a hydrolysis yield of 97.75%), 3-6 (75.45%), and 3-7 (73.2%) were continuously produced by adjusting the ratio of enzyme and chitosan or the flow rate of chitosan. Moreover, the CICPR exhibited good stability and reusability after several cycles. The recombinase Csn75-CBM has greatly improved the efficiency of the bioproduction of CHOS.


Asunto(s)
Quitosano/síntesis química , Enzimas Inmovilizadas/química , Glucano 1,3-beta-Glucosidasa/química , Glicósido Hidrolasas/química , Oligosacáridos/síntesis química , Aspergillus fumigatus/enzimología , Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Enzimas Inmovilizadas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glucano 1,3-beta-Glucosidasa/genética , Glicósido Hidrolasas/genética , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Dominios Proteicos/genética , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , beta-Glucanos
10.
J Microbiol Methods ; 190: 106327, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517039

RESUMEN

INTRODUCTION: The cell wall ß-1,3-glucan of fungal pathogen Candida albicans is an attractive antifungal target. ß-1,3-Glucan is the skeletal structure in the cell wall and the major scaffold for cell wall proteins. In previous studies using Saccharomyces cerevisiae, strong emulsification was detected by mixing cell wall proteins with oil. To date, there have been no reports of applying an emulsification phenomenon to assessing ß-1,3-glucan synthesis inhibition. OBJECTIVE: The aim of this study was to clarify that emulsification is useful as an indicator for evaluating ß-1,3-glucan synthesis inhibition in C. albicans. METHODS: At first, whether cell wall proteins released from cells by ß-1,3-glucanase treatment worked as an effective emulsifier in C. albicans was examined. Next, whether emulsification occurred even in the culture supernatant brought about by treating with bioactive compounds, including ß-1,3-glucan synthesis inhibitors, under osmotic protection was investigated. In addition, the release of cell wall proteins into the culture medium by treating with those compounds was examined. Finally, a simpler evaluation method using emulsion formation was examined for application to screening of inhibitors. RESULTS: Emulsification occurred by cell wall proteins obtained by treating with ß-1,3-glucanase in C. albicans. In addition, cell wall proteins were released into the culture medium by treating with ß-1,3-glucan synthesis inhibitors, resulting in emulsification. However, such phenomena were not observed in the case of other bioactive compounds. Furthermore, emulsification could be detected in the culture broth obtained by static culture on a small scale. CONCLUSIONS: The obtained results strongly implied that emulsification results from decreased ß-1,3-glucan levels in the cell wall. As emulsification can be simply evaluated by mixing the culture broth with oil, in the future application to the initial assessment and screening of ß-1,3-glucan synthesis inhibitors is expected.


Asunto(s)
Candida albicans/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , beta-Glucanos/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Caspofungina/farmacología , Pared Celular/efectos de los fármacos , Emulsiones/metabolismo , Glucano 1,3-beta-Glucosidasa/antagonistas & inhibidores , Micafungina/farmacología
11.
J Antibiot (Tokyo) ; 74(11): 807-816, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34408288

RESUMEN

Berberine hydrochloride (BH), an active component of Coptis chinensis and other plant taxa, has broad antimicrobial activity and may be useful for the treatment of Candida infections. In this study, the mechanisms underlying the inhibitory effect of BH against Candida albicans were evaluated, with a focus on the high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway, which regulates multiple physiological functions. BH (256 and 64 µg ml-1) significantly increased intracellular glycerol and ROS levels in C. albicans, inhibited germ tube and hyphal formation, and increased chitin and ß-1,3-glucan exposure on the cell wall. The inhibitory effect of BH was positively correlated with its concentration, and the inhibitory effect of 256 µg ml-1 BH was greater than that of 4 µg ml-1 fluconazole (FLC). Furthermore, RT-PCR analysis showed that 256 and 64 µg ml-1 BH altered the HOG-MAPK pathway in C. albicans. In particular, the upregulation of the core genes, SLN1, SSK2, HOG1, and PBS2 may affect the expression of key downstream factors related to glycerol synthesis and osmotic pressure (GPD1), ROS accumulation (ATP11 and SOD2), germ tube and hyphal formation (HWP1), and cell wall integrity (CHS3 and GSC1). BH affects multiple biological processes in C. albicans; thus, it can be an effective alternative to conventional azole antifungal agents.


Asunto(s)
Antifúngicos/farmacología , Berberina/farmacología , Candida albicans/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Candida albicans/genética , Fluconazol/farmacología , Genes Fúngicos/efectos de los fármacos , Glucano 1,3-beta-Glucosidasa/efectos de los fármacos , Glicerol/metabolismo , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo
12.
Biotechniques ; 70(4): 202-208, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512241

RESUMEN

Resistance is induced in cotton plants as the result of either viral infection or exogenous application of elicitors. Induced resistance can be evaluated by determining the production of ß-1,3-glucanase and chitinase in plants as a biochemical parameter. The assays being used for the determination of chitinase and ß-1,3-glucanase activity are laborious and not cost-effective, as the reducing sugars produced by the substrates colloidal chitin and laminarin are very expensive. The concentration of both substrates was standardized and reduced to 0.25% from 4% in a modified microplate assay, which appeared to be more effective. The amount of ß-1,3-glucanase and chitinase produced was significant and determined by the new modified assay. The sensitivity of the microplate assay was significantly raised approximately one- to twofold.


Asunto(s)
Quitinasas , Glucano 1,3-beta-Glucosidasa , Quitina , Gossypium
13.
J Basic Microbiol ; 61(2): 77-87, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373080

RESUMEN

The objectives of the present study were to purify and assess the killer toxin effect produced by Aureobasidium pullulans under casual agents of green mold (Penicillum digitatum) and sour rot (Geotrichum citri-aurantii). Initially, different methods of protein precipitation were tested. The proteolytic activity and the presence of proteins acting on cell wall receptors, ß-1,3-glucanase and chitinase were determined, and toxin purification was conducted by Sephadex G-75 gel exclusion chromatography and cellulose chromatography (medium fibers). Subsequently, purification was confirmed by polyacrylamide gel electrophoresis, and the detection of killer activity was performed in solid YEPD-methylene blue buffered with citrate-phosphate (0.1 M, pH 4.6). Toxin identification was performed by liquid chromatography-mass spectrometry. The results showed that the best protein precipitation method was 2:1 ethanol (vol/vol ethanol/supernatant). It was possible to observe the presence of enzymes with proteolytic activity, including ß-1,3-glucanase and chitinase. During the purification process, it was verified that the killer toxin produced by the yeast has a low-molecular-weight protein belonging to the ubiquitin family, which presents killer activity against P. digitatum and G. citri-aurantii.


Asunto(s)
Aureobasidium/metabolismo , Agentes de Control Biológico/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Secuencia de Aminoácidos , Antibiosis , Aureobasidium/fisiología , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/farmacología , Quitinasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/aislamiento & purificación , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Geotrichum/efectos de los fármacos , Glucano 1,3-beta-Glucosidasa/metabolismo , Penicillium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Proteolisis
14.
Int J Biol Macromol ; 163: 1010-1025, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32663561

RESUMEN

The laminarans are biologically active water-soluble polysaccharide (1,3;1,6-ß-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-ß-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives. This review is to outline what is currently known about laminarans and enzymes that catalyze of their transformation. We focused on information about sources, structure and properties of laminarans and 1,3-ß-D-glucanases, methods of obtaining and structural elucidation of laminarans, and biological activity of laminarans and products of their enzymatic transformation. It has an increased focus on the immunomodulating and anticancer activity of laminarans and their derivatives.


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glucanos/química , Animales , Humanos , Phaeophyceae/química , Polisacáridos/química , Relación Estructura-Actividad
15.
Carbohydr Polym ; 245: 116486, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718606

RESUMEN

Curdlan is a bacterial, water-insoluble, linear homopolysaccharide that has been widely used in the food industry. In this study, genome information of strain CGMCC 11546, a UV-induced high-yield mutant of the model curdlan-producing strain Agrobacterium sp. ATCC 31749, was used to investigate the molecular mechanism of curdlan biosynthesis. The maximum curdlan yield of 47.97 ± 0.57 g/L was obtained from strain CGMCC 11546 by using optimal media containing 60 g/L sucrose, 6 g/L yeast, 2 g/L KH2PO4, 0.4 g/L MgSO4·7H2O, 2 g/L CaCO3, 0.1 g/L FeSO4·7H2O, 0.04 g/L MnSO4, and 0.02 g/L ZnCl2 at 30 °C and 280 rpm after 96 h of fermentation. The gel strength of curdlan was improved by 41 % by knocking out the ß-1,3-glucanase genes exoK and exsH of strain CGMCC 11546. Furthermore, the application of curdlan from the ΔexoK-exsH strain in noodles significantly improved the eating quality of both raw and cooked noodles.


Asunto(s)
Agrobacterium/enzimología , Agrobacterium/genética , Genoma Bacteriano , Polisacáridos Bacterianos/metabolismo , beta-Glucanos/metabolismo , Agrobacterium/efectos de la radiación , Proteínas Bacterianas/genética , Medios de Cultivo/química , Suplementos Dietéticos , Fermentación , Calidad de los Alimentos , Geles/química , Eliminación de Gen , Glucano 1,3-beta-Glucosidasa/genética , Peso Molecular , Organismos Modificados Genéticamente , Rayos Ultravioleta , Secuenciación Completa del Genoma/métodos
16.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451508

RESUMEN

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glicósido Hidrolasas/química , beta-Glucanos/química , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucanos/química , Glicósidos/química , Modelos Moleculares , Especificidad por Sustrato/fisiología
17.
Appl Microbiol Biotechnol ; 104(12): 5563-5578, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32328681

RESUMEN

Biological (or reductive) soil disinfestation (BSD or RSD) is a bioremediation process to control soil-borne plant pathogens using activities of indigenous bacteria in the soil. Three obligate anaerobic bacterial strains (TW1, TW10, and TB10), which were isolated from anoxic soil subjected to BSD treatments, were examined for their abilities to produce anti-fungal enzymes. All strains were affiliated with the different lineages of the genus Clostridium. The three strains decomposed ß-1,3-glucans (curdlan and laminarin), and ß-1,3-glucanase activities were detected from their culture supernatants with these glucans. The three strains also produced the enzyme with wheat bran as a growth substrate and killed the Fusarium pathogen (Fusarium oxysporum f. sp. spinaciae) in the anaerobic co-incubation conditions. Observation by fluorescence microscopy of the pathogen cells showed that the three strains had degraded the fungal cells in different manners upon co-incubation with wheat bran. When the three strains were cultivated with the dead cells or the cell wall samples prepared from the Fusarium pathogen, strain TW1 utilized these materials as easily decomposable substrates by releasing ß-1,3-glucanase. When observed by fluorescence microscopy, it appeared that strain TW1 degraded the mycelial cell wall nearly thoroughly, with the septa remaining as undecomposed luminous rings. In contrast, the other two strains decomposed neither the dead cells nor the cell wall samples directly. The results indicate that the various anaerobic bacteria proliferated in the soil under the BSD treatments should play key roles as an organized bacterial community to eliminate fungal pathogens, namely by release of anti-fungal enzymes with different properties.Key points•Three clostridial strains isolated from BSD-treated soils produced ß-1,3-glucanase.•All strains killed the Fusarium pathogen in the anaerobic co-incubation conditions.•One of the strains produced ß-1,3-glucanase with the fungal cell wall as a substrate.•The strain degraded the cell wall almost completely, except for the mycelial septa.


Asunto(s)
Clostridium/enzimología , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Glucano 1,3-beta-Glucosidasa/biosíntesis , Microbiología del Suelo , Agricultura/métodos , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/enzimología , Clostridium/clasificación , Desinfección , Glucano 1,3-beta-Glucosidasa/farmacología , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo/química
18.
Food Chem ; 324: 126891, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339790

RESUMEN

We determined whether heat and chemical treatments could reduce the decay of kiwifruit caused by Botrytis cinerea during postharvest storage. Kiwifruits were treated with 5 g/L (w/v) potassium sorbate (PS), with a 48 °C hot water treatment (HT), and with a combined treatment (HT + PS). Mycelial growth of B. cinerea and the postharvest quality of 'XuXiang' kiwifruits were evaluated. HT + PS significantly inhibited mycelial growth, germ tube growth, and spore germination of B. cinerea. This treatment also reduced the incidence of gray mold in kiwifruit postharvest, and enhanced activities of defense-related enzymes in kiwifruit tissues. Compared with the control, all treatments resulted in lower malondialdehyde (MDA) contents and higher total phenolic contents in kiwifruits. HT + PS also increased the activities of chitinase and ß-1,3-glucanase and the transcript levels of their encoding genes. HT + PS can improve kiwifruit quality and reduce decay during postharvest storage.


Asunto(s)
Actinidia/microbiología , Botrytis/efectos de los fármacos , Ácido Sórbico/farmacología , Actinidia/química , Actinidia/enzimología , Botrytis/genética , Quitinasas/genética , Quitinasas/metabolismo , ADN de Hongos/metabolismo , Calidad de los Alimentos , Frutas/química , Frutas/enzimología , Frutas/microbiología , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Calor , Malondialdehído/metabolismo , Fenoles/metabolismo
19.
FEBS J ; 287(6): 1116-1137, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31595646

RESUMEN

The enzymes from hyperthermophilic microorganisms populating volcanic sites represent interesting cases of protein adaptation and biotransformations under conditions where conventional enzymes quickly denature. The difficulties in cultivating extremophiles severely limit access to this class of biocatalysts. To circumvent this problem, we embarked on the exploration of the biodiversity of the solfatara Pisciarelli, Agnano (Naples, Italy), to discover hyperthermophilic carbohydrate-active enzymes (CAZymes) and to characterize the entire set of such enzymes in this environment (CAZome). Here, we report the results of the metagenomic analysis of two mud/water pools that greatly differ in both temperature and pH (T = 85 °C and pH 5.5; T = 92 °C and pH 1.5, for Pool1 and Pool2, respectively). DNA deep sequencing and following in silico analysis led to 14 934 and 17 652 complete ORFs in Pool1 and Pool2, respectively. They exclusively belonged to archaeal cells and viruses with great genera variance within the phylum Crenarchaeota, which reflected the difference in temperature and pH of the two Pools. Surprisingly, 30% and 62% of all of the reads obtained from Pool1 and 2, respectively, had no match in nucleotide databanks. Genes associated with carbohydrate metabolism were 15% and 16% of the total in the two Pools, with 278 and 308 putative CAZymes in Pool1 and 2, corresponding to ~ 2.0% of all ORFs. Biochemical characterization of two CAZymes of a previously unknown archaeon revealed a novel subfamily GH5_19 ß-mannanase/ß-1,3-glucanase whose hemicellulose specificity correlates with the vegetation surrounding the sampling site, and a novel NAD+ -dependent GH109 with a previously unreported ß-N-acetylglucosaminide/ß-glucoside specificity. DATABASES: The sequencing reads are available in the NCBI Sequence Read Archive (SRA) database under the accession numbers SRR7545549 (Pool1) and SRR7545550 (Pool2). The sequences of GH5_Pool2 and GH109_Pool2 are available in GenBank database under the accession numbers MK869723 and MK86972, respectively. The environmental data relative to Pool1 and Pool2 (NCBI BioProject PRJNA481947) are available in the Biosamples database under the accession numbers SAMN09692669 (Pool1) and SAMN09692670 (Pool2).


Asunto(s)
Proteínas Bacterianas/genética , Ambientes Extremos , Glucano 1,3-beta-Glucosidasa/genética , Metagenómica , beta-Manosidasa/genética , Proteínas Bacterianas/metabolismo , Crenarchaeota/enzimología , Glucano 1,3-beta-Glucosidasa/metabolismo , Concentración de Iones de Hidrógeno , Temperatura , beta-Manosidasa/metabolismo
20.
Mol Biol Rep ; 47(2): 935-942, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31741259

RESUMEN

Phytophthora is considered one of the most destructive genus for many agricultural plant species worldwide, with a strong environmental and economic impact. Phytophthora cinnamomi is a highly aggressive Phytophthora species associated with the forest decline and responsible for the ink disease in chestnut trees (Castanea sativa Miller), a culture which is extremely important in Europe. This pathogenicity occurs due to the action of several enzymes like the hydrolysis of 1,3-ß-glucans at specific sites by the enzyme endo-1,3-ß-D-glucosidase. The aim of this work to analyze the heterologous expression in two microorganisms, Escherichia coli and Pichia pastoris, of an endo-1,3-ß-D-glucosidase encoded by the gene ENDO1 (AM259651) from P. cinnamomi. Different plasmids were used to clone the gene on each organism and the real-time quantitative polymerase chain reaction was used to determine its level of expression. Homologous expression was also analyzed during growth in different carbon sources (glucose, cellulose, and sawdust) and time-course experiments were used for endo-1,3-ß-D-glucosidase production. The highest expression of the endo-1,3-ß-D-glucosidase gene occurred in glucose after 8 h of induction. In vivo infection of C. sativa by P. cinnamomi revealed an increase in endo-1,3-ß-D-glucosidase expression after 12 h. At 24 h its expression decreased and at 48 h there was again a slight increase in expression, and more experiments in order to further explain this fact are underway.


Asunto(s)
Glucano Endo-1,3-beta-D-Glucosidasa/genética , Phytophthora/genética , Clonación Molecular/métodos , Glucano 1,3-beta-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glucosidasas/genética , Glucosidasas/metabolismo , Phytophthora/metabolismo , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...