Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
1.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710561

RESUMEN

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Asunto(s)
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacología , Glucanos/aislamiento & purificación , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Agaricales/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Peso Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Basidiomycota/química , Supervivencia Celular/efectos de los fármacos
2.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710571

RESUMEN

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Asunto(s)
Pared Celular , Quitina , Quitosano , Glucanos , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Oryza/química , Pared Celular/química , Quitosano/química , Quitosano/farmacología , Quitina/química , Quitina/farmacología , Glucanos/química , Glucanos/farmacología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo
3.
PLoS One ; 19(5): e0294998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713688

RESUMEN

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Asunto(s)
Vacunas Bacterianas , Modelos Animales de Enfermedad , Francisella tularensis , Ratas Endogámicas F344 , Tularemia , Vacunas de Subunidad , Animales , Tularemia/prevención & control , Tularemia/inmunología , Ratas , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Francisella tularensis/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Glucanos/inmunología , Glucanos/farmacología , Linfocitos T/inmunología , Femenino , Antígenos Bacterianos/inmunología
4.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690023

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Asunto(s)
Quitina , Colon , Modelos Animales de Enfermedad , Glucanos , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Dolor Visceral , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/fisiopatología , Masculino , Humanos , Colon/efectos de los fármacos , Colon/patología , Ratas , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/fisiopatología , Dolor Visceral/metabolismo , Dolor Visceral/etiología , Quitina/farmacología , Glucanos/farmacología , Glucanos/administración & dosificación , Ratones , Prebióticos/administración & dosificación , Ácido Trinitrobencenosulfónico/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/fisiopatología , Colitis/patología , Células HT29
5.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
6.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670773

RESUMEN

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Asunto(s)
Antibacterianos , Escherichia coli , Glucanos , Hidrogeles , Nanopartículas , Polilisina , Staphylococcus aureus , Cicatrización de Heridas , Xilanos , Glucanos/química , Glucanos/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Xilanos/química , Xilanos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Polilisina/química , Polilisina/farmacología , Ratones , Nanopartículas/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Reactivos de Enlaces Cruzados/química , Infección de Heridas/tratamiento farmacológico , Masculino
7.
Int J Biol Macromol ; 267(Pt 2): 131606, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631566

RESUMEN

This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.


Asunto(s)
Cinnamomum zeylanicum , Embalaje de Alimentos , Gelatina , Glucanos , Estructuras Metalorgánicas , Aceites Volátiles , Gelatina/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Cinnamomum zeylanicum/química , Embalaje de Alimentos/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Glucanos/química , Glucanos/farmacología , Conservación de Alimentos/métodos , Antibacterianos/farmacología , Antibacterianos/química , Carne/microbiología , Animales , Pruebas de Sensibilidad Microbiana
8.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521333

RESUMEN

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Asunto(s)
Antibacterianos , Glucanos , Goma Arábiga , Nanofibras , Nanofibras/química , Glucanos/química , Glucanos/farmacología , Goma Arábiga/química , Antibacterianos/farmacología , Antibacterianos/química , Salvia/química , Lactobacillus delbrueckii , Probióticos/química , Animales , Conservación de Alimentos/métodos , Carne Roja/microbiología , Staphylococcus aureus/efectos de los fármacos , Mucílago de Planta/química , Escherichia coli/efectos de los fármacos , Bovinos , Embalaje de Alimentos/métodos
9.
BMC Cancer ; 24(1): 339, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486205

RESUMEN

BACKGROUND: Beta-(1,3)(1,6)-D-glucan is a complex polysaccharide, which is found in the cell wall of various fungi, yeasts, bacteria, algae, barley, and oats and has immunomodulatory, anticancer and antiviral effects. In the present study, we investigated the effect of beta-(1,3)(1,6)-D-glucan derived from yeast on the proliferation of primary NK cells and breast cancer cell lines in 2D and 3D models, and on the cytotoxicity of primary NK cells against breast cancer cell lines in 2D and 3D models. METHODS: In this study, we investigated the effects of different concentrations of yeast-derived beta-(1→3)(1→6)-D-glucan on the proliferation and cytotoxicity of human NK cells and breast cancer cell lines in 2D and 3D models using the XTT cell proliferation assay and the CellTiter-Glo® 2.0 assay to determine the cytotoxicity of human NK cells on breast cancer cell lines in 2D and 3D models. RESULTS: We found that the co-incubation of NK cells with beta-glucan in the absence of IL2 at 48 h significantly increased the proliferation of NK cells, whereas the co-incubation of NK cells with beta-glucan in the presence of IL2 (70 U/ml) increased the proliferation of NK cells but not significantly. Moreover, beta-glucan significantly inhibited the proliferation of breast cancer cell lines in 2D model and induced a weak, non-significant growth inhibitory effect on breast cancer multicellular tumor spheroids (3D). In addition, the cytotoxicity of NK cells against breast cancer cell lines was examined in 2D and 3D models, and beta-glucan significantly increased the cytotoxicity of NK cells against MCF-7 (in 2D). CONCLUSIONS: Yeast derived beta-(1,3)(1,6)-D-glucan could contribute to the treatment of cancer by enhancing NK cell immune response as well as contributing to inhibition of breast cancer cell growth.


Asunto(s)
Neoplasias de la Mama , beta-Glucanos , Humanos , Femenino , Células MCF-7 , Glucanos/farmacología , Neoplasias de la Mama/patología , Saccharomyces cerevisiae , Interleucina-2 , Células Asesinas Naturales , beta-Glucanos/farmacología
10.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38490404

RESUMEN

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Asunto(s)
Glucanos , beta-Glucanos , Humanos , Glucanos/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes de Vacunas , beta-Glucanos/farmacología , beta-Glucanos/química , Antígenos
11.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494231

RESUMEN

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Asunto(s)
Agaricales , Antiinfecciosos , Microbioma Gastrointestinal , Animales , Humanos , Prebióticos , Polisacáridos/farmacología , Polisacáridos/química , Quitina/farmacología , Glucanos/farmacología , Antiinfecciosos/farmacología
12.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554906

RESUMEN

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Asunto(s)
Antioxidantes , Hidrogeles , Neovascularización Fisiológica , Polisacáridos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Animales , Polisacáridos/química , Polisacáridos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Abelmoschus/química , Glucanos/química , Glucanos/farmacología , Xilanos/química , Xilanos/farmacología , Ratones , Ratas , Masculino , Humanos , Angiogénesis
13.
J Microbiol Biotechnol ; 34(4): 880-890, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38379288

RESUMEN

The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, ß-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and ß-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or ß-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and ß-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and ß-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.


Asunto(s)
Ciclofosfamida , Euglena gracilis , Perfilación de la Expresión Génica , Bazo , Transcriptoma , beta-Glucanos , Animales , Euglena gracilis/genética , Ratones , Bazo/inmunología , Bazo/efectos de los fármacos , Transcriptoma/efectos de los fármacos , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Glucanos/farmacología , Masculino , Factores Inmunológicos/farmacología , Agentes Inmunomoduladores/farmacología , Citocinas/metabolismo , Huésped Inmunocomprometido
14.
Int J Biol Macromol ; 261(Pt 2): 129755, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278385

RESUMEN

Utilizing antibacterial packaging material is an effective approach to delay fruit rotting and spoilage thereby minimizing financial losses and reducing health harm. However, the barrier and mechanical properties of biodegradable antibacterial packaging materials are barely compatible with transparency. Herein, antimicrobial nanoparticles encapsulating citral (ANPs) were first prepared by emulsification under the stabilization of oxidized dextran (ODE) and ethylene diamine. Then, composite films with high transparency, good water vapor barrier, and mechanical and antibacterial properties for fruits packaging were prepared from chitosan (CS), carboxymethyl-glucan (CMG), poly(vinyl alcohol) (PVA), and ANPs by solvent casting strategy. The synergistic effects of electrostatic interaction and hydrogen bonding could regulate crystalline architecture, generating high transparency of the composite films (90 %). The mechanical properties of the composite film are improved with elongation at break up to 167 % and stress up to 32 MPa. The water vapor barrier property of the film is appropriate to the packed fruit for less weight loss and firmness remaining. Simultaneously, the addition of ANPs endowed the film with excellent antimicrobial and UV-barrier capabilities to reduce fruit mildew, thereby extending the shelf life of fruits. More importantly, the composite polymer solution could be sprayed or dipped directly on fruits as a coating for food storage to improve food shelf life, substantially expanding its ease of use and scope of use.


Asunto(s)
Monoterpenos Acíclicos , Antiinfecciosos , Quitosano , Nanopartículas , Glucanos/farmacología , Alcohol Polivinílico/química , Quitosano/química , Frutas , Vapor , Embalaje de Alimentos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Etanol/farmacología
15.
Int J Biol Macromol ; 260(Pt 2): 129479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237831

RESUMEN

Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.


Asunto(s)
Conservación de Alimentos , Glucanos , Animales , Glucanos/farmacología , Conservación de Alimentos/métodos , Embalaje de Alimentos/métodos , Permeabilidad
16.
Fish Shellfish Immunol ; 142: 109142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805111

RESUMEN

In this study, we investigated the impact of ß-1,3-glucan on the immune responses and gut microbiota of the river prawn (Macrobrachium nipponense) in the presence of Vibrio parahaemolyticus stress. Shrimps were fed one of the following diets: control (G1), 0.2% curdlan (G2), 0.1% ß-1,3-glucan (G3), 0.2% ß-1,3-glucan (G4), or 1.0% ß-1,3-glucan (G5) for 6 weeks and then challenged with V. parahaemolyticus for 96 h. Under Vibrio stress, shrimps in G4 exhibited the highest length gain rate, weight gain rate, and survival rate. They also showed increased intestinal muscle thickness and villus thickness compared to the control and 0.2% curdlan groups. The apoptosis rate was lower in G4 than in the control group, and the digestive enzyme activities (pepsin, trypsin, amylase, and lipase), immune enzyme activities (acid phosphatase, alkaline phosphatase, lysozyme, and phenoxidase), and energy metabolism (triglyceride, cholesterol, glycogen, and lactate dehydrogenase) were enhanced. Expression levels of growth-related genes (ecdysone receptor, calmodulin-dependent protein kinase I, chitin synthase, and retinoid X receptor) and immune-related genes (toll-like receptor 3, myeloid differentiation primary response 88, mitogen-activated protein kinase 7, and mitogen-activated protein kinase 14) were higher in G4 than in the control. Microbiota analysis indicated higher bacterial abundance in shrimps fed ß-1,3-glucan, as evidenced by Sob, Chao1, and ACE indices. Moreover, 0.2% ß-1,3-glucan increased the relative abundances of Bacteroidota and Firmicutes while reducing those of Corynebacteriales and Lactobacillales. In summary, ß-1,3-glucan enhances immune enzyme activities, alters immune-related gene expression, and impacts gut microbial diversity in shrimp. These findings provide valuable insights into the mechanisms underlying ß-1,3 glucan's immune-enhancing effects.


Asunto(s)
Microbioma Gastrointestinal , Palaemonidae , Penaeidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Inmunidad Innata/genética , Glucanos/farmacología , Dieta/veterinaria
17.
Georgian Med News ; (340-341): 71-75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37805877

RESUMEN

In this study, ß- glucan was extracted by the hot water extraction method followed by ethanol precipitation and purified using ion and gel filtration chromatography, then evaluate the anticancer effects of ß- glucan that purified from Phoenix dactylifera on cancer cell line. Ahmed Nahi Glioblastoma Multiform (ANGM) cancer cell line was used in the in vitro study. Cell line exposure times were calculated after 24, 48, and 72 hours in a micro titration plate under absolutely sterile conditions. High molecular weight ß-glucans can be obtained using the hot water extraction method without having to use strong agents to change their structure, like alkalis or acids. Anti-cancer property of ß-glucan derived from Phoenix dactylifera fruits on cancer cell lines has been reported. In this work, the ANGM cell line was treated with different concentrations of ß-glucan (31.25, 62.5, 125, 250, 500 and 1000 µg/mL). and the inhibition of the cells was investigated using the MTT assay after 24, 48 and 72 hours. The result obtained showed time and concentration dependent cytotoxic effect, and the higher concentrations at 48 hrs of exposure gave significantly (p<0.05) higher cytotoxic effect.


Asunto(s)
Phoeniceae , beta-Glucanos , Glucanos/farmacología , Glucanos/química , Frutas , beta-Glucanos/farmacología , beta-Glucanos/química , Agua
18.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834221

RESUMEN

Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is a chronic gastrointestinal inflammatory disease with unclear etiology and pathophysiology. Herein, we determined the effects of extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) on tight junction protein expression, inflammation, and apoptosis in a dextran sodium sulfate (DSS)-induced acute colitis model. Fifty mice were divided into normal, DSS, DSS + Polycan 250 mg/kg (Polycan 250), DSS + Polycan 500 mg/kg (Polycan 500), and DSS + 5-aminosalicylic acid 100 mg/kg (5-ASA) groups. Their body weights, colon lengths, histological changes in colon tissue, and tight junction function were observed. Results showed that Polycan 250, Polycan 500, and 5-ASA significantly inhibited body weight loss compared with DSS. Similar to 5-ASA, Polycan 500 exhibited preventive effects on colon length shortening and histological changes in colon tissues. Polycan inhibited the DSS-induced decrease in fluorescein isothiocyanate-dextran permeability and myeloperoxidase activity. Moreover, Polycan significantly recovered serum cytokine (e.g., tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) or mRNA expression in colon tissue compared with DSS. Polycan also inhibited apoptosis by reducing caspase-3 activity and the Bcl-2 associated X/B-cell lymphoma 2 (Bcl-2) ratio. Additionally, DSS treatment significantly reduced microbial abundance and diversity, but the administration of Polycan reversed this effect. Collectively, Polycan protected intestinal barrier function and inhibited inflammation and apoptosis in DSS-induced colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , beta-Glucanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Dextranos/metabolismo , Glucanos/farmacología , Glucanos/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/metabolismo , Colitis/patología , Colon/patología , Inflamación/metabolismo , Interleucina-6/metabolismo , Mesalamina , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
19.
Int J Biol Macromol ; 253(Pt 3): 126998, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37729981

RESUMEN

CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast ß-D-glucan (NH2-Glu) was simply synthesized through functionalization of ß-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast ß-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos , Neoplasias , Humanos , Adyuvantes Inmunológicos/farmacología , Saccharomyces cerevisiae , Glucanos/farmacología , Macrófagos , Inmunoterapia , Oligodesoxirribonucleótidos/farmacología
20.
Biomater Adv ; 154: 213584, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639855

RESUMEN

Pullulan possesses excellent film-forming properties and oxygen isolation capabilities. However, it exhibits limited antibacterial properties and poor water resistance, thereby hindering its application in the field of food preservation. In this study, we synthesized D-arginine-succinic anhydride-pullulan (Arg-SA-Pul) by carboxylating pullulan and subsequently grafting it with D-arginine. The antimicrobial test demonstrated that Arg-SA-Pul exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. Using Arg-SA-Pul as the primary material and glycerol as the plasticizer, we fabricated an antibacterial film via the tape casting method. The film's light transmittance, water solubility, and water vapor permeability were evaluated. Compared to the natural pullulan film, the Arg-SA-Pul film exhibited lower vapor permeability. Additionally, we conducted preservation tests on cherries by coating them with the Arg-SA-Pul film. The results demonstrated that the Arg-SA-Pul film exhibited a significant preservation effect on cherries and effectively delayed their ripening and senescence. In the future, the Arg-SA-Pul film could be employed as a bacteriostatic preservation material to extend the shelf life of fruits.


Asunto(s)
Antiinfecciosos , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Antibacterianos/farmacología , Glucanos/farmacología , Ácidos Carboxílicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA