Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996709

RESUMEN

The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.


Asunto(s)
Homeostasis , Larva , Mitocondrias , Pez Cebra , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Homeostasis/efectos de los fármacos , Larva/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Glucosa/metabolismo , Glucosa/toxicidad , Óxido Nítrico/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ferroptosis/efectos de los fármacos
2.
Biochem Pharmacol ; 227: 116447, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038553

RESUMEN

Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-ß, Homeostasis model assessment of ß-cell function; IL-1ß, Interleukin-1ß; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gliclazida , Ratas Sprague-Dawley , Ácido Tióctico , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Animales , Gliclazida/farmacología , Gliclazida/uso terapéutico , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Ratas , Masculino , Glucosa/metabolismo , Glucosa/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
3.
Biochem Pharmacol ; 226: 116392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942091

RESUMEN

Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.


Asunto(s)
Glucosa , Podocitos , Receptores Acoplados a Proteínas G , Transducción de Señal , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Glucosa/toxicidad , Glucosa/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Línea Celular
4.
Toxicol In Vitro ; 99: 105866, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844119

RESUMEN

Epidemiological studies have suggested a correlation between bisphenol A (BPA) and type 2 diabetes (T2DM). The effects of BPA on ß-cell dysfunction may reveal the risks from an in vitro perspective. We used the rat insulinoma (INS-1) cell lines (a type of ß-cells) to set up normal or damaged models (DM), which were exposed to various concentrations of BPA (0.001, 0.01, 0.1, 1, 10 and 100 µM). An increase in reactive oxygen species (ROS) and apoptosis, and a decrease in cell viability were observed in INS-1 cells exposed to high doses of BPA for 48 h. Interestingly, exposure to lower doses of BPA for 24 h resulted in increased ROS levels and apoptosis rates in INS-1 in the DM group, along with decreased cell viability, suggesting that BPA exerts toxicity to INS-1 cells, particularly to the DM group. Insulin levels and Glut2 expression, glucose consumption, intracellular Ca2+ and insulin secretion were increased in INS-1 cells after 48 h exposure to high dose of BPA. Stronger effects were observed in the DM group, even those exposed to low doses of BPA for 24 h. Moreover, BPA inhibited high glucose-stimulated insulin secretion in these cells. Our research suggests that low doses of BPA exacerbate the dysfunction caused by glucolipotoxicity, implying environmental BPA exposure poses a risk for individuals with prediabetes or T2DM.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Supervivencia Celular , Diabetes Mellitus Tipo 2 , Transportador de Glucosa de Tipo 2 , Glucosa , Insulina , Insulinoma , Fenoles , Especies Reactivas de Oxígeno , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Animales , Ratas , Diabetes Mellitus Tipo 2/inducido químicamente , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Insulinoma/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Insulina/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Calcio/metabolismo , Contaminantes Ambientales/toxicidad , Secreción de Insulina/efectos de los fármacos , Neoplasias Pancreáticas/inducido químicamente
5.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709349

RESUMEN

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Glucosa , Túbulos Renales Proximales , Estrés Oxidativo , Especies Reactivas de Oxígeno , Escopoletina , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Glucosa/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Estrés Oxidativo/efectos de los fármacos , Escopoletina/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Fibrosis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718570

RESUMEN

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Asunto(s)
Apigenina , Transición Epitelial-Mesenquimal , Glucosa , Histonas , Epitelio Pigmentado de la Retina , Transición Epitelial-Mesenquimal/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Animales , Apigenina/farmacología , Acetilación/efectos de los fármacos , Humanos , Glucosa/metabolismo , Glucosa/toxicidad , Histonas/metabolismo , Línea Celular , Ratones , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Ratones Endogámicos C57BL , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/tratamiento farmacológico , Proteína p300 Asociada a E1A/metabolismo , Masculino , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/genética
7.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715043

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Factores de Diferenciación de Crecimiento , Inflamasomas , Ratones Endogámicos C57BL , Miocitos Cardíacos , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Inflamasomas/metabolismo , Masculino , Factores de Diferenciación de Crecimiento/metabolismo , Ratas , Glucemia/metabolismo , Ratones , Glucosa/metabolismo , Glucosa/toxicidad , Proteínas Morfogenéticas Óseas , PPAR alfa
8.
Shock ; 62(2): 227-234, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813926

RESUMEN

ABSTRACT: Background: Diabetic nephropathy (DN) is a complication of diabetes that is the leading cause of death in diabetic patients. Circular RNA (circRNA) is a hot topic in the research of human diseases. However, the role of circ_Supt3 in DN remains unclear. Methods: High glucose (HG) treatment of mouse podocyte (MPC5) cells to mimic DN cell injury. Quantitative real-time polymerase chain reaction was performed to detect the expression of circ_Supt3, microRNA-185-5p (miR-185-5p), and GTPase-activating protein-binding protein 2 (G3bp2). 5-Ethynyl-2'-deoxyuridine (EdU) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium Bromide (MTT) assays were used to examine cell proliferation, and flow cytometry was used to detect cell apoptosis. Western blot was used to assess the levels of relative proteins. Enzyme-linked immunosorbent assay detected the inflammation cytokines. Dual-luciferase reporter and RNA pull-down assays were used to confirm the interaction of miR-185-5p and circ_Supt3 or G3bp2. Results: Circ_Supt3 and G3bp2 were highly expressed and miR-185-5p expression was diminished in DN mice. HG treatment inhibited cell proliferation and accelerated cell apoptosis and inflammation response, and the knockdown of circ_Supt3 reversed these effects. Bioinformatics predicted that circ_Supt3 contained a binding site for miR-185-5p, and G3bp2 was a direct target of miR-185-5p. Circ_Supt3 regulated G3bp2 expression by miR-185-5p. Moreover, the circ_Supt3/miR-185-5p/G3bp2 axis regulated the cell behavior of HG-induced MPC5 cells. Conclusion: Our findings suggest that the knockdown of circ_Supt3 protects mouse MPC5 cells against HG-induced cell injury via the miR-185-5p/G3bp2 axis.


Asunto(s)
Glucosa , MicroARNs , Podocitos , ARN Circular , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , ARN Circular/genética , ARN Circular/metabolismo , Podocitos/metabolismo , Glucosa/toxicidad , Glucosa/farmacología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Apoptosis/genética , Proliferación Celular , Línea Celular , ARN Endógeno Competitivo
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650130

RESUMEN

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Asunto(s)
Apoptosis , Supervivencia Celular , Daño del ADN , ADN Mitocondrial , Glucosa , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Glucosa/toxicidad , Glucosa/farmacología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Anhídrido Hidrolasas/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ensayo Cometa , Animales
10.
Biomed Pharmacother ; 174: 116536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569274

RESUMEN

Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-ß (TGF-ß) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1ß (IL-1ß), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-ß levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-ß secretion.


Asunto(s)
Curcumina , Fibroblastos , Glucosa , Especies Reactivas de Oxígeno , Factor de Crecimiento Transformador beta , Curcumina/farmacología , Glucosa/toxicidad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Animales , Secretoma/efectos de los fármacos , Secretoma/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Nefropatías Diabéticas/metabolismo , Antioxidantes/farmacología
11.
Cardiovasc Diabetol ; 23(1): 122, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580969

RESUMEN

BACKGROUND: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS: We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS: Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS: EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Ratones , Animales , Humanos , Histonas , FN-kappa B/metabolismo , Células Endoteliales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Metilación , Diabetes Mellitus/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Endotelio , Glucosa/toxicidad , Glucosa/metabolismo
12.
Transl Vis Sci Technol ; 13(4): 12, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38587436

RESUMEN

Purpose: Circular RNAs (circRNAs) have been verified to participate in multiple biological processes and disease progression. Yet, the role of circRNAs in the pathogenesis of diabetic retinopathy (DR) is still poorly understood and deserves further study. This study aimed to investigate the role of circRNAs in the regulation of high glucose (HG)-induced apoptosis of retinal microvascular endothelial cells (RMECs). Methods: Epiretinal membranes from patients with DR and nondiabetic patients with idiopathic macular epiretinal membrane were collected for this study. The circRNA microarrays were performed using high-throughput sequencing. Hierarchical clustering, functional enrichment, and network regulation analyses were used to analyze the data generated by high-throughput sequencing. Next, RMECs were subjected to HG (25 mM) conditions to induce RMECs apoptosis in vitro. A series of experiments, such as Transwell, the Scratch wound, and tube formation, were conducted to explore the regulatory effect of circRNA on RMECs. Fluorescence in situ hybridization (FISH), immunofluorescence staining, and Western blot were used to study the mechanism underlying circRNA-mediated regulation. Results: A total of 53 differentially expressed circRNAs were found in patients with DR. Among these, hsa_circ_0000880 was significantly upregulated in both the diabetic epiretinal membranes and in an in vitro DR model of HG-treated RMECs. Hsa_circ_0000880 knockout facilitated RMECs vitality and decreased the paracellular permeability of RMECs under hyperglycemia. More importantly, silencing of hsa_circ_0000880 significantly inhibited HG-induced ROS production and RMECs apoptosis. Hsa_circ_0000880 acted as an endogenous sponge for eukaryotic initiation factor 4A-III (EIF4A3). Knockout of hsa_circ_0000880 reversed HG-induced decrease in EIF4A3 protein level. Conclusions: Our findings suggest that hsa_circ_0000880 is a novel circRNA can induce RMECs apoptosis in response to HG conditions by sponging EIF4A3, offering an innovative treatment approach against DR. Translational Relevance: The circRNAs participate in the dysregulation of microvascular endothelial function induced by HG conditions, indicating a promising therapeutic target for DR.


Asunto(s)
Retinopatía Diabética , Membrana Epirretinal , Humanos , Células Endoteliales , ARN Circular/genética , Hibridación Fluorescente in Situ , Retinopatía Diabética/genética , Apoptosis/genética , Glucosa/toxicidad , Factor 4A Eucariótico de Iniciación , ARN Helicasas DEAD-box
13.
J Appl Toxicol ; 44(8): 1246-1256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38666302

RESUMEN

Voacangine, a naturally occurring alkaloid, has been testified to display beneficial effects on a variety of human diseases, but its role in ischemic stroke is unclear. The impacts of voacangine on oxygen-glucose deprivation/reoxygenation (OGD/R)-tempted hippocampal neuronal cells are investigated. The bioinformatics analysis found that voacangine is a bioactive ingredient that may have good effects on ischemic stroke. KEGG pathways analysis found that voacangine may regulate ischemic stroke through modulating the PI3K-Akt-FoxO signaling pathway. Voacangine could mitigate OGD/R-tempted cytotoxicity in HT22 cells. Voacangine mitigated OGD/R-tempted oxidative stress in HT22 cells by diminishing reactive oxygen species level and enhancing superoxide dismutase level. Voacangine mitigated OGD/R-tempted ferroptosis in HT22 cells. Voacangine promoted activation of the PI3K-Akt-FoxO signaling in OGD/R-induced HT22 cells. Inactivation of the PI3K-Akt-FoxO signaling pathway reversed the protective effects of voacangine against OGD/R-tempted oxidative stress, cytotoxicity, and ferroptosis in HT22 cells. In conclusion, voacangine protects hippocampal neuronal cells against OGD/R-caused oxidative stress and ferroptosis by activating the PI3K-Akt-FoxO signaling.


Asunto(s)
Ferroptosis , Glucosa , Hipocampo , Neuronas , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Estrés Oxidativo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo
14.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542166

RESUMEN

Diabetic retinopathy (DR) severely affects vision in individuals with diabetes. High glucose (HG) induces oxidative stress in retinal cells, a key contributor to DR development. Previous studies suggest that fibroblast growth factor-1 (FGF-1) can mitigate hyperglycemia and protect tissues from HG-induced damage. However, the specific effects and mechanisms of FGF-1 on DR remain unclear. In our study, FGF-1-pretreated adult retinal pigment epithelial (ARPE)-19 cells were employed to investigate. Results indicate that FGF-1 significantly attenuated HG-induced oxidative stress, including reactive oxygen species, DNA damage, protein carbonyl content, and lipid peroxidation. FGF-1 also modulated the expression of oxidative and antioxidative enzymes. Mechanistic investigations showed that HG induced high endoplasmic reticulum (ER) stress and upregulated specific proteins associated with apoptosis. FGF-1 effectively alleviated ER stress, reduced apoptosis, and restored autophagy through the adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin signaling pathway. We observed that the changes induced by HG were dose-dependently reversed by FGF-1. Higher concentrations of FGF-1 (5 and 10 ng/mL) exhibited increased effectiveness in mitigating HG-induced damage, reaching statistical significance (p < 0.05). In conclusion, our study underscores the promising potential of FGF-1 as a safeguard against DR. FGF-1 emerges as a formidable intervention, attenuating oxidative stress, ER stress, and apoptosis, while concurrently promoting autophagy. This multifaceted impact positions FGF-1 as a compelling candidate for alleviating retinal cell damage in the complex pathogenesis of DR.


Asunto(s)
Retinopatía Diabética , Factor 1 de Crecimiento de Fibroblastos , Humanos , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Carbonilación Proteica , Epitelio Pigmentado de la Retina/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , Autofagia , Retinopatía Diabética/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
15.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517447

RESUMEN

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Asunto(s)
Retinopatía Diabética , Mitofagia , Sirtuina 3 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Retinopatía Diabética/metabolismo , Células Epiteliales/metabolismo , Glucosa/toxicidad , Mitofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/patología , Sirtuina 3/genética , Sirtuina 3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Humanos
16.
In Vitro Cell Dev Biol Anim ; 60(3): 278-286, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485819

RESUMEN

Previous studies have implicated targeting Pim-1 proto-oncogene, serine/threonine kinase (PIM1) as a preventive measure against high glucose-induced cellular stress and apoptosis. This study aimed to reveal the potential role and regulatory mechanism of PIM1 in diabetic retinopathy. Human retinal microvascular endothelial cells (hRMECs) underwent high glucose induction, and fluctuations in PIM1 levels were assessed. By overexpressing PIM1, its effects on the levels of inflammatory factors, oxidative stress indicators, migration and tube formation abilities, tight junction protein expression levels, and ferroptosis in hRMECs were identified. Afterwards, hRMECs were treated with the ferroptosis-inducing agent erastin, and the effect of erastin on the above PIM1 regulatory functions was focused on. PIM1 was downregulated upon high glucose, and its overexpression inhibited the inflammatory response, oxidative stress, cell migration, and tube formation potential in hRMECs, whereas elevated tight junction protein levels. Furthermore, PIM1 overexpression reduced intracellular iron ion levels, lipid peroxidation, and levels of proteins actively involved in ferroptosis. Erastin treatment reversed the impacts of PIM1 on hRMECs, suggesting the mediation of ferroptosis in PIM1 regulation. The current study has yielded critical insights into the role of PIM1 in ameliorating high glucose-induced hRMEC dysfunction through the inhibition of ferroptosis.


Asunto(s)
Células Endoteliales , Ferroptosis , Humanos , Animales , Retina/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/farmacología
17.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 219-225, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372092

RESUMEN

Inhibiting mesangial cell proliferation is one of the strategies to control the early progression of diabetic nephropathy (DN). GSK3ß is closely related to cell apoptosis as well as the development of DN, but whether it acts on the proliferation of mesangial cells is unclear. This study aimed to elucidate the role and mechanism of GSK3ß-mediated lncRNA in high glucose-induced mesangial cell proliferation. HBZY-1 cells were used to establish the cell model of DN. The automatic cell counter was applied to assess cell proliferation. Flow cytometry was used to detect cell apoptosis and intracellular ROS levels. High-throughput transcriptomics sequencing was performed to detect the different expressions of long noncoding RNAs (lncRNAs) in the cell model of DN after knocking down the expression of GSK3ß by the transfection of siRNA. The expression of RNA was detected by real-time PCR. In the cell model of DN using HBZY-1 cells, cell proliferation was enhanced accompanied by GSK3ß activation and elevated apoptosis rate and reactive oxygen species (ROS) levels. A panel of novel lncRNAs, which were differentially expressed after GSK3ß knockdown in the cell model of DN, were identified by high-throughput transcriptomics sequencing. Among them, the expression of TCONS_00071187 was upregulated under high glucose conditions while the knockdown of the GSK3ß expression led to the downregulation of TCONS_00071187. The knockdown of TCONS_00071187 resulted in reduced mesangial cell proliferation, and decreased apoptosis rates and ROS levels. In conclusion, GSK3ß promoted mesangial cell proliferation by upregulating TCONS_00071187, which led to enhanced ROS production under high glucose conditions in the cell model of DN. This study revealed the role of GSK3ß medicated lncRNAs in the development of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , ARN Largo no Codificante , Proliferación Celular/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Glucosa/toxicidad , Glucógeno Sintasa Quinasa 3 beta/genética , Especies Reactivas de Oxígeno , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Ratas
18.
Mediators Inflamm ; 2024: 4121166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405620

RESUMEN

The macrovascular complications of diabetes cause high mortality and disability in patients with type 2 diabetes mellitus (T2DM). The inflammatory response of vascular smooth muscle cell (VSMC) runs through its pathophysiological process. Salvianolic acid B (Sal B) exhibits beneficial effects on the cardiovascular system. However, its role and mechanism in diabetic vascular inflammatory response remain unclear. In this study, we found that Sal B reduced vascular inflammation in diabetic mice and high glucose- (HG-) induced VSMC inflammation. Subsequently, we found that Sal B reduced HG-induced VSMC inflammation by downregulating FOXO1. Furthermore, miR-486a-5p expression was obviously reduced in HG-treated VSMC. Sal B attenuated HG-induced VSMC inflammation by upregulating miR-486a-5p. Loss- and gain-of-function experiments had proven that the transfection of the miR-486a-5p mimic inhibited HG-induced VSMC inflammation whereas that of the miR-486a-5p inhibitor promoted HG-induced VSMC inflammation, thereby leading to the amelioration of vascular inflammation in the diabetic mice. Furthermore, studies had shown that miR-486a-5p inhibited FOXO1 expression by directly targeting its 3'-UTR. In conclusion, Sal B alleviates the inflammatory response of VSMC by upregulating miR-486a-5p and aggravating its inhibition of FOXO1 expression. Sal B exerts a significant anti-inflammatory effect in HG-induced VSMC inflammation by modulating the miR-486a-5p/FOXO1 axis.


Asunto(s)
Benzofuranos , Depsidos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Animales , Ratones , MicroARNs/metabolismo , Músculo Liso Vascular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Cultivadas , Inflamación/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
19.
Clin Exp Nephrol ; 28(6): 513-521, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416339

RESUMEN

BACKGROUND: Cell division cycle 42 (CDC42) modulates metabolism, inflammation, and fibrosis to engage in the pathology of diabetic complications. This study intended to further investigate the influence of CDC42 on viability, apoptosis, inflammation, epithelial-mesenchymal transition, and fibrosis in high glucose (HG)-treated renal tubular epithelial cells. METHODS: HK-2 cells were exposed to HG medium (30 mM) to establish the diabetic nephropathy (DN) cellular model, then the cells were transfected with scramble overexpression control (oeNC) or CDC42 overexpression (oeCDC42) vectors. RESULTS: Both the level of CDC42 mRNA and protein were decreased in HG-treated HK-2 cells in a dose- and time-dependent manner. Then HG-treated HK-2 cells were proposed for the following experiments. It was found that CDC42 increased CCK-8 detected viability and EdU positive cells. On the contrary, CDC42 reduced cell apoptosis, which was reflected by decreased TUNEL positive rate, increased BCL2, and reduced BAX. Interestingly, CDC42 inhibited fibrosis, which was reflected by increased E-Cadherin, as well as decreased Vimentin, TGF-ß1, Collagen1, and α-SMA. Apart from these, CDC42 also attenuated proinflammatory cytokine production, including TNF-α, IL-1ß, and IL-6. Moreover, CDC42 activated the PAK1/AKT pathway, which was reflected by increased p-PAK1 and p-AKT. However, CDC42 did not affect p-ERK. CONCLUSION: CDC42 may retard DN progression via its regulation of renal tubular epithelial cell functions, which may be due to its stimulation of the PAK1/AKT pathway.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Glucosa , Túbulos Renales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proteína de Unión al GTP cdc42 , Quinasas p21 Activadas , Quinasas p21 Activadas/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucosa/farmacología , Glucosa/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Túbulos Renales/patología , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Inflamación/patología , Inflamación/metabolismo
20.
Int. j. morphol ; 42(1): 197-204, feb. 2024. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1528841

RESUMEN

SUMMARY: Obesity-related pathophysiologies such as insulin resistance and the metabolic syndrome show a markedly increased risk for type 2 diabetes and atherosclerotic cardiovascular disease. This risk appears to be linked to alterations in adipose tissue function, leading to chronic inflammation and the dysregulation of adipocyte-derived factors. Brassica rapa have been used in traditional medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the effect of nutritional stress induced by a high-fat and high-sucrose diet on the pathophysiology of visceral adipose tissue and the therapeutic effect of Brassica rapa in male Wistar rats. We subjected experimental rats to a high-fat (10 %) high-sucrose (20 %)/per day for 11 months and treated them for 20 days with aqueous extract Br (AEBr) at 200 mg/kg at the end of the experiment. At the time of sacrifice, we monitored plasma and tissue biochemical parameters as well as the morpho-histopathology of visceral adipose tissue. We found AEBr corrected metabolic parameters and inflammatory markers in homogenized visceral adipose tissue and reduced hypertrophy, hyperplasia, and lipid droplets. These results suggest that AEBr enhances anti-diabetic, anti-inflammatory and a protective effect on adipose tissue morphology in type 2 diabetes and obesity.


La fisiopatología relacionadas con la obesidad, como la resistencia a la insulina y el síndrome metabólico, muestran un riesgo notablemente mayor de diabetes tipo 2 y enfermedad cardiovascular aterosclerótica. Este riesgo parece estar relacionado con alteraciones en la función del tejido adiposo, lo que lleva a una inflamación crónica y a la desregulación de los factores derivados de los adipocitos. Brassica rapa se ha utilizado en la medicina tradicional para el tratamiento de varias enfermedades, incluida la diabetes. Este estudio tuvo como objetivo investigar el efecto del estrés nutricional inducido por una dieta rica en grasas y sacarosa sobre la fisiopatología del tejido adiposo visceral y el efecto terapéutico de Brassica rapa en ratas Wistar macho. Sometimos a ratas experimentales a una dieta rica en grasas (10 %) y alta en sacarosa (20 %)/por día durante 11 meses y las tratamos durante 20 días con extracto acuoso de Br (AEBr) a 200 mg/kg al final del experimento. En el momento del sacrificio, monitoreamos los parámetros bioquímicos plasmáticos y tisulares, así como la morfohistopatología del tejido adiposo visceral. Encontramos parámetros metabólicos corregidos por AEBr y marcadores inflamatorios en tejido adiposo visceral homogeneizado y reducción de hipertrofia, hiperplasia y gotitas de lípidos. Estos resultados sugieren que AEBr mejora el efecto antidiabético, antiinflamatorio y protector sobre la morfología del tejido adiposo en la diabetes tipo 2 y la obesidad.


Asunto(s)
Animales , Masculino , Ratas , Extractos Vegetales/administración & dosificación , Tejido Adiposo/efectos de los fármacos , Brassica rapa/química , Resistencia a la Insulina , Extractos Vegetales/uso terapéutico , Ratas Wistar , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Grasa Intraabdominal , Glucosa/toxicidad , Inflamación , Lípidos/toxicidad , Obesidad/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...