RESUMEN
To improve paste stability of cassava starch, including acid resistance, high-temperature shear resistance and freeze-thaw stability, cassava starch was modified by sequential maltogenic amylase and transglucosidase to form an optimally denser structure, or branched density (12.76 %), molecular density (15.17 g/mol/nm3), and the proportions of short-branched chains (41.41 % of A chains and 44.01 % of B1 chains). Viscosity stability (88.52 %) of modified starch was higher than that (64.92 %) of native starch. After acidic treatment for 1 h, the viscosity of modified starch and native starch decreased by 56.53 % and 65.70 %, respectively. Compared to native starch, modified starch had lower water loss in freeze-thaw cycles and less viscosity reduction during high-temperature and high-shear processing. So, the appropriate molecular density and denser molecule structure enhanced paste stabilities of modified starch. The outcome expands the food and non-food applications of cassava starch.
Asunto(s)
Manihot , Almidón , Almidón/química , Manihot/química , Viscosidad , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Calor , Glucosiltransferasas/química , Glucosiltransferasas/metabolismoRESUMEN
Polyols, or sugar alcohols, are widely used in the industry as sweeteners and food formulation ingredients, aiming to combat the incidence of diet-related Non-Communicable Diseases. Given the attractive use of Generally Regarded As Safe (GRAS) enzymes in both academia and industry, this study reports on an optimized process to achieve polyols transglucosylation using a dextransucrase enzyme derived from Leuconostoc mesenteroides. These enzyme modifications could lead to the creation of a new generation of glucosylated polyols with isomalto-oligosaccharides (IMOS) structures, potentially offering added functionalities such as prebiotic effects. These reactions were guided by a design of experiment framework, aimed at maximizing the yields of potential new sweeteners. Under the optimized conditions, dextransucrase first cleared the glycosidic bond of sucrose, releasing fructose with the formation of an enzyme-glucosyl covalent intermediate complex. Then, the acceptor substrate (i.e., polyols) is bound to the enzyme-glucosyl intermediate, resulting in the transfer of glucosyl unit to the tested polyols. Structural insights into the reaction products were obtained through nuclear maneic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analyses, which revealed the presence of linear α(1 â 6) glycosidic linkages attached to the polyols, yielding oligosaccharide structures containing from 4 to 10 glucose residues. These new polyols-based oligosaccharides hold promise as innovative prebiotic sweeteners, potentially offering valuable health benefits.
Asunto(s)
Glucosiltransferasas , Leuconostoc mesenteroides , Oligosacáridos , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Leuconostoc mesenteroides/enzimología , Leuconostoc mesenteroides/química , Leuconostoc mesenteroides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Polímeros/química , Polímeros/metabolismo , Biocatálisis , Edulcorantes/química , Edulcorantes/metabolismo , GlicosilaciónRESUMEN
This study aims to develop an efficient chitin-based purification system, leveraging a novel design where the target proteins, superfolding green fluorescent protein (sfGFP) and Thermus antranikianii trehalose synthase (TaTS), fused with a chitin-binding domain (ChBD) from Bacillus circulans WL-12 chitinase A1 and a tobacco etch virus protease (TEVp) cleavage site. This configuration allows for the effective immobilization of the target proteins on chitin beads, facilitating the removal of endogenous proteins. A mutant TEVp, H-TEVS219V-ChBD, fused with the His-tag and ChBD, is employed to cleave the target proteins from the chitin beads specifically. Subsequently, fresh chitin beads are added for adsorption to remove H-TEVS219V-ChBD in the solution, thereby significantly improving the purity of the target protein. Our results confirm that this system can efficiently and specifically purify and recover sfGFP and TaTS, achieving electrophoretic-grade purity exceeding 90%. This system holds significant potential for industrial production and other applications.
Asunto(s)
Quitina , Endopeptidasas , Quitina/química , Quitina/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Endopeptidasas/genética , Bacillus/enzimología , Bacillus/química , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Quitinasas/aislamiento & purificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Dominios ProteicosRESUMEN
The effect of delignification on the adsorption capacity of loofah sponge-based immobilized metal affinity chromatography adsorbents was investigated with recombinant His-tagged trehalose synthase as the model protein. Pretreatments with [EMIM][Ac] ionic liquid at 80 °C for 5 h and with sodium chlorite/acetic acid at 80 °C for 2 h were found effective for the removal of lignin, leading to a loss in biomass of 15.7% and 25.2%, respectively. Upon delignification, the metal chelating capacities of the loofah sponge-based adsorbents prepared with 5-h ionic liquid pretreatment (712 ± 82 µmole Cu(II)/g) and with 2-h sodium chlorite/acetic acid pretreatment (1012 ± 18 µmole Cu(II)/g) were 38% and 97% higher than that of the control (514 ± 55 µmole Cu(II)/g), adsorbent prepared with untreated loofah sponge, respectively. Results of protein adsorption study indicated that the Co(II)-loaded adsorbent prepared with 2-h sodium chlorite/acetic acid pretreatment exhibited the highest adsorption capacity and selectivity for the recombinant His-tagged trehalose synthase, giving a purification product with a specific activity of 7.62 U/mg protein. The predicted maximum adsorption capacity of the delignified loofah sponge-based adsorbent, 2.04 ± 0.14 mg/g, was 73% higher than that of the control.
Asunto(s)
Cromatografía de Afinidad , Glucosiltransferasas , Cromatografía de Afinidad/métodos , Adsorción , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Luffa/química , Cobre/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Histidina/química , Histidina/metabolismo , Líquidos Iónicos/química , BiomasaRESUMEN
Sucrose phosphorylase (SPase), a member of the glycoside hydrolase GH13 family, possesses the ability to catalyze the hydrolysis of sucrose to generate α-glucose-1-phosphate and can also glycosylate diverse substrates, showcasing a wide substrate specificity. This enzyme has found extensive utility in the fields of food, medicine, and cosmetics, and has garnered significant attention as a focal point of research in transglycosylation enzymes. Nevertheless, SPase encounters numerous obstacles in industrial settings, including low enzyme yield, inadequate thermal stability, mixed regioselectivity, and limited transglycosylation activity. In-depth exploration of efficient expression strategies and molecular modifications based on the crystal structure and functional information of SPase is now a critical research priority. This paper systematically reviews the source microorganisms, crystal structure, and catalytic mechanism of SPase, summarizes diverse heterologous expression systems based on expression hosts and vectors, and examines the application and molecular modification progress of SPase in synthesizing typical glycosylated products. Additionally, it anticipates the broad application prospects of SPase in industrial production and related research fields, laying the groundwork for its engineering modification and industrial application.
Asunto(s)
Glucosiltransferasas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/biosíntesis , Glicosilación , Especificidad por Sustrato , Expresión GénicaRESUMEN
Based on the principle of cascade reaction, a fusion enzyme of dextransucrase and dextranase was designed without linker to catalyze the production of oligo-dextran with homogeneous molecular weight from sucrose in one catalytic step. Due to the different effects of temperature on the two components of the fusion enzyme, temperature served as the "toggle switch" for the catalytic efficiency of the two-level fusion enzyme, regulating the catalytic products of the fusion enzyme. Under optimal conditions, the fusion enzyme efficiently utilized 100 % of the sucrose, and the yield of oligo-dextran with a homogeneous molecular weight reached 70 %. The product has been purified and characterized. The probiotic potential of the product was evaluated by analyzing the growth of 10 probiotic species. Its cytotoxic and anti-inflammatory activities were also determined. The results showed that the long-chain oligo-dextran in this study had significantly better probiotic potential and anti-inflammatory activity compared to other oligosaccharides. This study provides a strategy for the application of oligo-dextran in the food and pharmaceutical industries.
Asunto(s)
Dextranasa , Dextranos , Glucosiltransferasas , Temperatura , Dextranos/química , Dextranasa/metabolismo , Dextranasa/química , Dextranasa/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Probióticos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Sacarosa/química , Sacarosa/metabolismo , Peso MolecularRESUMEN
γ-Cyclodextrin (γ-CD) is an attractive material among the natural cyclodextrins owing to its excellent properties. γ-CD is primarily produced from starch by γ-cyclodextrin glycosyltransferase (γ-CGTase) in a controlled system. However, difficulty in separation and low conversion rate leads to high production costs for γ-CD. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was used in γ-CD production from cassava starch. With the introduction of sodium tetraphenylborate (NaBPh4), the total conversion rate was promoted from an initial 18.07 % to 50.49 % and the γ-CD ratio reached 78.81 % with a yield of 39.79 g/L. Furthermore, the mechanism was conducted via the determination of binding constant, which indicated that γ-CD exhibited much stronger binding strength with NaBPh4 than ß-CD. The reformation of water molecules and the chaotropic effect might be the main driving forces for the interaction. Additionally, the conformations of CD complexes were depicted by NMR and molecular docking. The results further verified different binding patterns between CDs and tetraphenylborate ions, which might be the primary reason for the specific binding. This system not only guides γ-CD production with an efficient and easy-to-remove production aid but also offers a new perspective on the selection of complexing agents in CD production.
Asunto(s)
Bacillus , Boratos , Glucosiltransferasas , Simulación del Acoplamiento Molecular , gamma-Ciclodextrinas , gamma-Ciclodextrinas/química , gamma-Ciclodextrinas/metabolismo , Bacillus/enzimología , Boratos/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Almidón/química , Almidón/metabolismo , Manihot/químicaRESUMEN
The lignan secoisolariciresinol (SECO) diglucoside (SDG) is a phytoestrogen with diverse effects. LuUGT74S1 glucosylates SECO to SDG, whereby only small amounts of the monoglucoside SMG are formed intermediately, which exhibit increased activity. To identify critical amino acids that are important for enzymatic activity and the SMG/SDG ratio, 3D structural modeling and docking, as well as site-directed mutation studies, were performed. Enzyme assays with ten mutants revealed that four of them had identical kinetic data to LuUGT74S1, while three showed reduced and one increased catalytic efficiency kcat/Km. S82F and E189L substitutions resulted in the complete absence of activity. A17 and Q136 are crucial for the conversion of SMG to SDG as A17S and Q136F mutants exhibited the highest SMG/SDG ratios of 0.7 and 0.4. Kinetic analyses show that diglucosylation is an essentially irreversible reaction, while monoglycosylation is kinetically favored. The results lay the foundation for the biotechnological production of SMG.
Asunto(s)
Butileno Glicoles , Glucosiltransferasas , Cinética , Glucosiltransferasas/genética , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/química , Mutación , Glucósidos/química , Glucósidos/metabolismo , Mutagénesis Sitio-Dirigida , LignanosRESUMEN
2-O-(α-d-glucopyranosyl)-sn-glycerol (2-αGG) has been applied in the food industry due to its numerous physiological benefits. The synthesis of 2-αGG can be achieved through a cascade catalytic reaction involving sucrose phosphorylase (SP) and 2-O-α-glucosylglycerol phosphorylase (GGP). However, the low substrate transfer rates between free enzymes have hindered the efficiency of 2-αGG synthesis. To address this issue, a novel technology was developed to prepare sequential multi-enzyme nanoflowers via chemical crosslinking and protein assembly, thus overcoming diffusion limitations. Specifically, spatially sequential co-immobilized enzymes, referred to as SP-GGP@Cap, were created through the targeted assembly of Bifidobacterium adolescentis SP and Marinobacter adhaerens GGP on Ca2+. This assembly was facilitated by the spontaneous protein reaction between SpyTag and SpyCatcher. Compared to free SP-GGP, SP-GGP@Cap demonstrated improved thermal and pH stability. Moreover, SP-GGP@Cap enhanced the biosynthesis of 2-αGG, achieving a relative concentration of 98 %. Additionally, it retained the ability to catalyze the substrate to yield 61 % relative concentration of 2-αGG even after ten cycles of recycling. This study presents a strategy for the spatially sequential co-immobilization of multiple enzymes in a confined environment and provides an exceptional biocatalyst for the potential industrial production of 2-αGG.
Asunto(s)
Enzimas Inmovilizadas , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Glucósidos/química , Glucósidos/biosíntesis , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Bifidobacterium adolescentis/enzimología , Concentración de Iones de Hidrógeno , Fosforilasas/metabolismo , Fosforilasas/química , Estabilidad de Enzimas , TemperaturaRESUMEN
Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations. Solid-state nuclear magnetic resonance (NMR) spectroscopy allows the estimation of the CMF width from the ratio of interior to surface glucose residues. However, there is uncertainty in the assignment of NMR spectral peaks to surface or interior chains. Freeze-fracture transmission electron microscopy images show cellulose synthase complexes to be "rosettes" of six lobes each consistent with a trimer of cellulose synthase enzymes, consistent with the synthesis of 18 parallel glucan chains in the CMF. Nevertheless, the number of chains in CMFs remains to be conclusively demonstrated.
Asunto(s)
Celulosa , Glucanos , Microfibrillas , Celulosa/química , Glucanos/química , Microfibrillas/química , Pared Celular/química , Pared Celular/metabolismo , Plantas/química , Plantas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Espectroscopía de Resonancia Magnética/métodosRESUMEN
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.
Asunto(s)
Proteínas Bacterianas , Deinococcus , Glucosiltransferasas , Maltosa , Trehalosa , Glucosiltransferasas/genética , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Deinococcus/enzimología , Deinococcus/genética , Deinococcus/química , Trehalosa/metabolismo , Trehalosa/química , Maltosa/metabolismo , Maltosa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , MutaciónRESUMEN
Leuconostoc citreum JZ-002 was extracted from artisanal orange wine. This strain was used to synthesize dextran with a purification extraction of 27.9 g/L. The resulting dextran had a molecular weight of 2.45 × 106 Da. A significant portion, amounting to 64 % of the structure, is constituted by the main chain, with α-(1,6) glycosidic bonds acting as the linkages. In contrast, the branched chain, comprising 34 % of the entire molecule, is characterized by the presence of α-(1,3) glycosidic bonds. The dextransucrase DsrB, believed to be accountable for the formation of the dextran backbone, was successfully cloned into the pET-28a-AcmA vector. The recombinant expression of the enzyme was achieved. Purified recombinant enzymes and immobilized in a single go using the gram-positive enhancer matrix (GEM). The maximum yield of dextran produced by suchimmobilized enzyme was 191.9 g/L. The composition featured a dextran connected via α-(1,6) glycosidic linkages. Molecular weight controlled synthesis was achieved with sucrose concentrations of 100-2000 mM and enzyme concentrations of 320-1280 U. The Mw of the synthesized dextran extended from 4680 to 1,320,000 Da. By controlling the ratio between enzyme concentration and sucrose concentration, dextrans with diverse Mw can be enzymatically generated.
Asunto(s)
Dextranos , Glucosiltransferasas , Leuconostoc , Dextranos/química , Dextranos/biosíntesis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Leuconostoc/enzimología , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sacarosa/químicaRESUMEN
Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.
Asunto(s)
Diterpenos de Tipo Kaurano , Glicosiltransferasas , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosilación , Edulcorantes/química , Edulcorantes/metabolismo , Stevia/química , Stevia/enzimología , Stevia/metabolismo , Stevia/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ingeniería de Proteínas , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , GlicósidosRESUMEN
Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and ß-1,3-glucan synthesis using 2-nitrophenyl ß-d-glucopyranoside, 4-nitrophenyl ß-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl ß-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus ß-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and ß-1,3-glucan.
Asunto(s)
Celulosa , Glucosiltransferasas , beta-Glucanos , Celulosa/química , beta-Glucanos/química , beta-Glucanos/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Clostridium thermocellum/enzimología , Fosforilasas/metabolismo , Fosforilasas/químicaRESUMEN
Dextransucrases play a crucial role in the production of dextran from economical sucrose; therefore, there is a pressing demand to explore novel dextransucrases with better performance. This study characterized a dextransucrase enzyme, LmDexA, which was identified from the Leuconostoc mesenteroides NN710. This bacterium was isolated from the soil of growing dragon fruit in Guangxi province, China. We successfully constructed six different N-terminal truncated variants through sequential analysis. Additionally, a truncated variant, ΔN190LmDexA, was constructed by removing the 190 amino acids fragment from the N-terminal. This truncated variant was then successfully expressed heterologously in Escherichia coli and purified. The purified ΔN190LmDexA demonstrated optimal hydrolysis activity at a pH of 5.6 and a temperature of 30 °C. Its maximum specific activity was measured to be 126.13 U/mg, with a Km of 13.7 mM. Results demonstrated a significant improvement in the heterologous expression level and total enzyme activity of ΔN190LmDexA. ΔN190LmDexA exhibited both hydrolytic and transsaccharolytic enzymatic activities. When sucrose was used as the substrate, it primarily produced high-molecular-weight dextran (>400 kDa). However, upon the addition of maltose as a receptor, it resulted in the production of a significant amount of oligosaccharides. Our results can provide valuable information for enhancing the characteristics of recombinant dextransucrase and potentially converting sucrose into high-value-added dextran and oligosaccharides.
Asunto(s)
Clonación Molecular , Glucosiltransferasas , Leuconostoc mesenteroides , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Leuconostoc mesenteroides/enzimología , Leuconostoc mesenteroides/genética , Dextranos/química , Dextranos/biosíntesis , Dextranos/metabolismo , Hidrólisis , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Mutación , Especificidad por Sustrato , Sacarosa/metabolismo , Cinética , TemperaturaRESUMEN
Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1 (Combi-CLEAs-CM) were successfully developed to synthesis maltooligosaccharides (MOS). Yet, the poor cross-linking performance between chitosan (cross-linker) and enzymes resulting low activity recovery and catalytic efficiency. In this study, we proposed the functionalization of cross-linkers with the integration of computational analysis to study the influences of different functional group on cross-linkers in combi-CLEAs development. From in-silico analysis, O-carboxymethyl chitosan (OCMCS) with the highest binding affinity toward both enzymes was chosen and showed alignment with the experimental result, in which OCMCS was synthesized as cross-linker to develop improved activity recovery of Combi-CLEAs-CM-ocmcs (74 %). The thermal stability and deactivation energy (205.86 kJ/mol) of Combi-CLEAs-CM-ocmcs were found to be higher than Combi-CLEAs-CM (192.59 kJ/mol). The introduction of longer side chain of carboxymethyl group led to a more flexible structure of Combi-CLEAs-CM-ocmcs. This alteration significantly reduced the Km value of Combi-CLEAs-CM-ocmcs by about 3.64-fold and resulted in a greater Kcat/Km (3.63-fold higher) as compared to Combi-CLEAs-CM. Moreover, Combi-CLEAs-CM-ocmcs improved the reusability with retained >50 % of activity while Combi-CLEAs-CM only 36.18 % after five cycles. Finally, maximum MOS production (777.46 mg/g) was obtained by Combi-CLEAs-CM-ocmcs after optimization using response surface methodology.
Asunto(s)
Quitosano , Glucosiltransferasas , Oligosacáridos , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Oligosacáridos/química , Oligosacáridos/síntesis química , Quitosano/química , Quitosano/análogos & derivados , Reactivos de Enlaces Cruzados/química , Bacillus/enzimología , Agregado de Proteínas , Simulación del Acoplamiento Molecular , Estabilidad de Enzimas , Glicósido HidrolasasRESUMEN
Although myricetin (3,3',4',5,5',7-hexahydroxyflavone, MYR) has a high antioxidant capacity and health functions, its use as a functional food material is limited owing to its low stability and water solubility. Amylosucrase (ASase) is capable of biosynthesizing flavonol α-glycoside using flavonols as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus deserti (DdAS) efficiently biosynthesizes a novel MYR α-triglucoside (MYRαG3) using MYR as the acceptor molecule. Comparative homology analysis and computational simulation revealed that DdAS has a different active pocket for the transglycosylation reaction. DdAS produced MYRαG3 with a conversion efficiency of 67.4 % using 10 mM MYR and 50 mM sucrose as acceptor and donor molecules, respectively. The structure of MYRαG3 was identified as MYR 4'-O-4â³,6â³-tri-O-α-D-glucopyranoside using NMR and LC-MS. In silico analysis confirmed that DdAS has a distinct active pocket compared to other ASases. In addition, molecular docking simulations predicted the synthetic sequence of MYRαG3. Furthermore, MYRαG3 showed a similar DPPH radical scavenging activity of 49 %, comparable to MYR, but with significantly higher water solubility, which increased from 0.03 µg/mL to 511.5 mg/mL. In conclusion, this study demonstrated the efficient biosynthesis of a novel MYRαG3 using DdAS and highlighted the potential of MYRαG3 as a functional material.
Asunto(s)
Deinococcus , Flavonoides , Glucósidos , Glucosiltransferasas , Solubilidad , Deinococcus/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/biosíntesis , Glucósidos/química , Glucósidos/biosíntesis , Glucósidos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Simulación del Acoplamiento MolecularRESUMEN
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Asunto(s)
Glucosiltransferasas , Quercetina , Rutina , Sacarosa , Rutina/química , Quercetina/química , Quercetina/análogos & derivados , Quercetina/metabolismo , Sacarosa/química , Sacarosa/análogos & derivados , Sacarosa/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Temperatura , BiocatálisisRESUMEN
Crocus sativus L. is a both medicinal and food bulbous flower whose qualities are geographically characterized. However, identification involving different places of origin of such substances is currently limited to single-omics mediated content analysis. Integrated metabolomics and proteomics, 840 saffron samples from six countries (Spain, Greece, Iran, China, Japan, and India) were analyzed using the QuEChERS extraction method. A total of 77 differential metabolites and 14 differential proteins were identified. The limits of detection of the method were 1.33 to 8.33 µg kg-1, and the recoveries were 85.56% to 105.18%. Using homology modeling and molecular docking, the Gln84, Lys195, Val182 and Pro184 sites of Crocetin glucosyltransferase 2 were found to be the targets of crocetin binding. By multivariate statistical analysis (PCA and PLS-DA), different saffron samples were clearly distinguished. The results provided the basis for the selection and identification of high quality saffron from different producing areas.
Asunto(s)
Carotenoides , Crocus , Simulación del Acoplamiento Molecular , Vitamina A , Crocus/química , Crocus/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Vitamina A/análogos & derivados , Vitamina A/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Biotransformación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flores/química , Flores/metabolismoRESUMEN
The microdomains of plasmodesmata, specialized cell-wall channels responsible for communications between neighboring cells, are composed of various plasmodesmata-located proteins (PDLPs) and lipids. Here, we found that, among all PDLP or homologous proteins in Arabidopsis thaliana genome, PDLP5 and PDLP7 possessed a C-terminal sphingolipid-binding motif, with the latter being the only member that was significantly upregulated upon turnip mosaic virus and cucumber mosaic virus infections. pdlp7 mutant plants exhibited significantly reduced callose deposition, larger plasmodesmata diameters, and faster viral transmission. These plants exhibited increased glucosidase activity but no change in callose synthase activity. PDLP7 interacted specifically with glucan endo-1,3-ß-glucosidase 10 (BG10). Consistently, higher levels of callose deposition and slower virus transmission in bg10 mutants were observed. The interaction between PDLP7 and BG10 was found to depend on the presence of the Gnk2-homologous 1 (GnK2-1) domain at the N terminus of PDLP7 with Asp-35, Cys-42, Gln-44, and Leu-116 being essential. In vitro supplementation of callose was able to change the conformation of the GnK2-1 domain. Our data suggest that the GnK2-1 domain of PDLP7, in conjunction with callose and BG10, plays a key role in plasmodesmata opening and closure, which is necessary for intercellular movement of various molecules.