RESUMEN
BACKGROUND: Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS: In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS: As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS: In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Asunto(s)
Células Epiteliales , Receptores de IgG , Humanos , Células HeLa , Células Epiteliales/microbiología , Animales , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/genética , Glutaminasa/metabolismo , Glutaminasa/genética , Francisella tularensis/genética , Tularemia/microbiologíaRESUMEN
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Estrés Oxidativo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Antraquinonas/farmacología , Glutaminasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Progresión de la Enfermedad , Glutamato Deshidrogenasa/metabolismo , NADP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Ratones DesnudosRESUMEN
Common vetch protein, similar to pea protein, offers valuable qualities like being non-GMO, hypoallergenic, and nutritious. However, its strong beany flavor hinders consumer acceptance. This study explores enzymatic deamidation using glutaminase to address this issue. GC-MS analysis identified 54 volatile compounds in the raw material protein, with 2-pentylfuran, hexanal, and several nonenals contributing the most to the undesirable aroma. Principal component analysis (PCA) confirmed the effectiveness of glutaminase deamidation in removing these off-flavors. The study further reveals that deamidation alters the protein's secondary structure, with an increase in α - helix structure and a decrease in ß - sheet structure. The surface hydrophobicity increased from 587.33 ± 2.63 to 1855.63 ± 3.91 exposing hydrophobic clusters that bind flavor compounds. This disruption weakens the interactions that trap these undesirable flavors, ultimately leading to their release and a more pleasant aroma. These findings provide valuable insights for enzymatic deodorization of not only common vetch protein but also pea protein.
Asunto(s)
Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Cromatografía de Gases y Espectrometría de Masas , Aromatizantes/química , Odorantes/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Estructura Secundaria de ProteínaRESUMEN
Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack the context of CAF-cancer interaction, focusing on monocultures. This study assesses the influence of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red) and fibroblast (green) in a co-culture system to evaluate CAFs' effects on PCa cell proliferation and clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival analysis of GLS1 expression in the PCa epithelium and stroma identified a "high-risk" patient group that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.
Asunto(s)
Fibroblastos Asociados al Cáncer , Proliferación Celular , Técnicas de Cocultivo , Glutamina , Neoplasias de la Próstata , Microambiente Tumoral , Humanos , Glutamina/metabolismo , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Glutaminasa/metabolismo , Fibroblastos/metabolismoRESUMEN
Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.
Asunto(s)
Negro o Afroamericano , Glutaminasa , Glutamina , Mitocondrias , Fosforilación Oxidativa , Neoplasias de la Vejiga Urinaria , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Negro o Afroamericano/genética , Línea Celular Tumoral , Proliferación Celular , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Metabolómica/métodos , Mitocondrias/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genéticaRESUMEN
Protein glutaminases (PG; EC = 3.5.1.44) are enzymes known for enhancing protein functionality. In this study, we cloned and expressed the gene chryb3 encoding protein glutaminase PG3, exhibiting 39.4 U/mg specific activity. Mature-PG3 featured a substrate channel surrounded by aromatic and hydrophobic amino acids at positions 38-45 and 78-84, with Val81 playing a pivotal role in substrate affinity. The dynamic opening and closing motions between Gly65, Thr66, and Cys164 at the catalytic cleft greatly influence substrate binding and product release. Redesigning catalytic pocket and cocatalytic region produced combinatorial mutant MT6 showing a 2.69-fold increase in specific activity and a 2.99-fold increase at t65 °C1/2. Furthermore, MT6 boosted fish myofibrillar protein (MP) solubility without NaCl. Key residues such as Thr3, Asn54, Val81, Tyr82, Asn107, and Ser108 were vital for PG3-myosin interaction, particularly Asn54 and Asn107. This study sheds light on the catalytic mechanism of PG3 and guided its rational engineering and utilization in low-salt fish MP product production.
Asunto(s)
Proteínas de Peces , Glutaminasa , Miofibrillas , Ingeniería de Proteínas , Glutaminasa/metabolismo , Glutaminasa/genética , Glutaminasa/química , Animales , Proteínas de Peces/genética , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Miofibrillas/química , Miofibrillas/metabolismo , Miofibrillas/genética , Proteínas Musculares/genética , Proteínas Musculares/química , Proteínas Musculares/metabolismo , CinéticaRESUMEN
Antipsychotic drugs have been shown to have antitumor effects but have had limited potency in the clinic. Here, we unveil that pimozide inhibits lysosome hydrolytic function to suppress fatty acid and cholesterol release in glioblastoma (GBM), the most lethal brain tumor. Unexpectedly, GBM develops resistance to pimozide by boosting glutamine consumption and lipogenesis. These elevations are driven by SREBP-1, which we find upregulates the expression of ASCT2, a key glutamine transporter. Glutamine, in turn, intensifies SREBP-1 activation through the release of ammonia, creating a feedforward loop that amplifies both glutamine metabolism and lipid synthesis, leading to drug resistance. Disrupting this loop via pharmacological targeting of ASCT2 or glutaminase, in combination with pimozide, induces remarkable mitochondrial damage and oxidative stress, leading to GBM cell death in vitro and in vivo. Our findings underscore the promising therapeutic potential of effectively targeting GBM by combining glutamine metabolism inhibition with lysosome suppression.
Asunto(s)
Glioblastoma , Glutamina , Metabolismo de los Lípidos , Lisosomas , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glutamina/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Línea Celular Tumoral , Animales , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ratones , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antígenos de Histocompatibilidad MenorRESUMEN
In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 µM against MDA-MB-231. This value was 5.4-fold higher than that of the parental EP. Bioassay optimization further identified 3g as a novel glutaminase 1 (GLS1) inhibitor (IC50 = 3.77 µM). In MDA-MB-231 cells, 3g reduced the cellular glutamate levels by blocking the glutamine hydrolysis pathway, which triggered reactive oxygen species production and induced caspase-dependent apoptosis. Molecular docking indicated that 3g interacts with the reaction site of the variable binding pocket by forming multiple interactions with GLS1. In a mouse model of breast cancer, 3g showed remarkable therapeutic effects at a dose of 50 mg/kg, with no apparent toxicity. Based on these results, 3g could be further evaluated as a novel GLS1 inhibitor for triple-negative breast cancer (TNBC) therapy.
Asunto(s)
Antineoplásicos , Proliferación Celular , Ergosterol , Glutaminasa , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas , Humanos , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ergosterol/análogos & derivados , Ergosterol/química , Ergosterol/farmacología , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-ActividadRESUMEN
Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response. The dose-escalation study included six participants and the dose-expansion study included 24 participants. Therapy was well tolerated and led to an objective response rate of 70% with (marrow) complete remission in 53% of participants and a median overall survival of 11.6 months, with evidence of myeloid differentiation in responders determined by single-cell RNA sequencing. Glutamine transporter solute carrier family 38 member 1 in MDS stem cells was associated with clinical responses and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of CB-839 and AZA as a combined metabolic and epigenetic approach in MDS. ClinicalTrials.gov identifier: NCT03047993 .
Asunto(s)
Azacitidina , Glutaminasa , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Glutaminasa/antagonistas & inhibidores , Masculino , Femenino , Anciano , Persona de Mediana Edad , Azacitidina/uso terapéutico , Azacitidina/farmacología , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Tiadiazoles/uso terapéutico , Tiadiazoles/farmacología , Tiadiazoles/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , BencenoacetamidasRESUMEN
We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Glutaminasa , Glucólisis , Folículo Piloso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Animales , Folículo Piloso/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Ratones , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Células Madre/metabolismo , Glutamina/metabolismo , Humanos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/metabolismo , Carcinogénesis/genéticaRESUMEN
Fibrosis is a chronic disease characterized by excessive extracellular matrix production, which leads to disruption of organ function. Fibroblasts are key effector cells of this process, responding chiefly to the pleiotropic cytokine transforming growth factor-ß1 (TGF-ß1), which promotes fibroblast to myofibroblast differentiation. We found that extracellular nutrient availability profoundly influenced the TGF-ß1 transcriptome of primary human lung fibroblasts and that biosynthesis of amino acids emerged as a top enriched TGF-ß1 transcriptional module. We subsequently uncovered a key role for pyruvate in influencing glutaminase (GLS1) inhibition during TGF-ß1-induced fibrogenesis. In pyruvate-replete conditions, GLS1 inhibition was ineffective in blocking TGF-ß1-induced fibrogenesis, as pyruvate can be used as the substrate for glutamate and alanine production via glutamate dehydrogenase (GDH) and glutamic-pyruvic transaminase 2 (GPT2), respectively. We further show that dual targeting of either GPT2 or GDH in combination with GLS1 inhibition was required to fully block TGF-ß1-induced collagen synthesis. These findings embolden a therapeutic strategy aimed at additional targeting of mitochondrial pyruvate metabolism in the presence of a glutaminolysis inhibitor to interfere with the pathological deposition of collagen in the setting of pulmonary fibrosis and potentially other fibrotic conditions.
Asunto(s)
Fibroblastos , Glutaminasa , Ácido Pirúvico , Factor de Crecimiento Transformador beta1 , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Humanos , Ácido Pirúvico/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Pulmón/patología , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis , Células Cultivadas , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/antagonistas & inhibidores , Miofibroblastos/metabolismo , Miofibroblastos/patologíaRESUMEN
Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.
Asunto(s)
Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Proteína-Arginina N-Metiltransferasas , Empalmosomas , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Línea Celular Tumoral , Empalmosomas/metabolismo , Empalmosomas/genética , Apoptosis , Regulación Neoplásica de la Expresión Génica , Epigénesis Genética , Animales , Transcriptoma , Metabolómica/métodos , Glutaminasa/genética , Glutaminasa/metabolismo , Ratones , Empalme del ARN , Proliferación CelularRESUMEN
In brief: FSH leads to glutamine dependence, which is required for mTORC1 activation and in consequence Sertoli cell proliferation. Abstract: The spermatogenic capacity of adult individuals depends on, among other factors, the number of Sertoli cells (SCs) that result from the proliferative waves during development. FSH upregulates SC proliferation at least partly, through the activation of the PI3K/Akt/mTORC1 pathway, among other mechanisms. It is widely known that mTORC1 is a sensor of amino acids. Among amino acids, glutamine acquires relevance since it might contribute to cell cycle progression through the modulation of mTORC1 activity. It has not been studied yet whether glutamine intervenes in FSH-mediated regulation of SC proliferation and cell cycle progression, or if FSH has any effect on glutamine metabolism. Eight-day-old rat SCs were incubated in culture media without glutamine or with glutamine in the absence or presence of a glutamine transporter inhibitor or a glutaminase activity inhibitor under basal conditions or stimulated with FSH. The results obtained show that FSH does not promote SC proliferation and mTORC1 activation in the absence of glutamine. Also, FSH modulates glutamine metabolism increasing glutaminase isoform 2 and reducing glutamine synthetaseexpression. FSH did not promote SC proliferation and mTORC1 activation when glutaminase activity was inhibited. The results suggest that glutamine or its metabolites might cooperate with FSH in the upregulation of SC proliferation through mTORC1. In addition, as FSH modulates glutamine metabolism through the induction of glutaminase isoform 2, the hormonal control of glutamine metabolism might be part of the intricate signaling network triggered by FSH, which is crucial to establish the population of mature SCs that supports the reproductive function.
Asunto(s)
Proliferación Celular , Hormona Folículo Estimulante , Glutamina , Diana Mecanicista del Complejo 1 de la Rapamicina , Células de Sertoli , Animales , Glutamina/metabolismo , Glutamina/farmacología , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/citología , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Proliferación Celular/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratas , Células Cultivadas , Transducción de Señal/efectos de los fármacos , Glutaminasa/metabolismo , Ratas Sprague-Dawley , Ratas WistarRESUMEN
Glutaminase inhibitors are currently being explored as potential treatments for cancer. This study aimed to elucidate the molecular mechanisms underlying the effects of CB-839 on lung tumor cell lines compared to non-tumor cell lines. Viability assays based on NADPH-dependent dehydrogenases activity, ATP energy production, or mitochondrial reductase activity were used to determine that CB-839 caused significant tumor cell specific inhibition of cellular functions. Clonogenic survival assay revealed a dose dependent reduction in clonogenic survival of various lung tumor cells presenting estimated IC50 values between 10 and 90 nM, while no effect on non-tumor cells was observed. CB-839 led to a 20% reduction in glutaminase (GLS1, a mitochondrial enzyme that catalyzes the conversion of glutamine to glutamate) activity, and a dose-dependent reduced glutamine consumption in tumor cells and had no effect on non-tumor cells. Cell cycle analysis showed the CB-839 did not lead to cell cycle arrest. Apoptosis and necrosis assays revealed an only slight increase in apoptosis in tumor cells. Furthermore, a trypan blue exclusion assay revealed about 40% growth reduction in tumor cells at 0.1-1 µM CB-839 treatment. Surprisingly, treated cells resumed normal growth when re-plated in a drug-free medium, demonstrating reversibility. In hypoxic conditions, CB-839's effect on clonogenic survival was amplified in a dose dependent manner consistent with increased role of GLS1 for energy production under hypoxic conditions. In conclusion, these results suggest CB-839 efficacy is linked to temporary and reversible reduction in glutamine utilization suggesting induction of dormancy.
Asunto(s)
Apoptosis , Bencenoacetamidas , Glutaminasa , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Bencenoacetamidas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glutamina/metabolismo , Tiadiazoles/farmacología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacosRESUMEN
Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.
Asunto(s)
Senescencia Celular , Glutaminasa , Células Madre Mesenquimatosas , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Senescencia Celular/efectos de los fármacos , Humanos , Animales , Ratones , Gelatina de Wharton/citología , Tiadiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , SulfurosRESUMEN
Protein glutaminase (PG; EC 3.5.1.44) is a class of food-grade enzyme with the potential to significantly improve protein functionality. However, its low catalytic activity and stability greatly hindered industrial application. In this study, we employed structural-based engineering and computational-aided design strategies to target the engineering of protein glutaminase PG5, which led to the development of a combinatorial mutant, MT8, exhibiting a specific activity of 31.1 U/mg and a half-life of 216.2 min at 55 °C. The results indicated that the flexible region in MT8 shifted from the C-terminus to the N-terminus, with increased N-terminal flexibility positively correlating with its catalytic activity. Additionally, MT8 notably boosted fish myofibrillar proteins (MPs) solubility under the absence of NaCl conditions and enhanced their foaming and emulsifying properties. Key residues like Asp31, Ser72, Asn121, Asp471, and Glu485 were crucial for maintaining PG5-myosin interaction, with Ser72 and Asn121 making significant energy contributions.
Asunto(s)
Proteínas de Peces , Peces , Glutaminasa , Ingeniería de Proteínas , Glutaminasa/química , Glutaminasa/metabolismo , Glutaminasa/genética , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces/genética , Miofibrillas/química , Miofibrillas/metabolismo , Miofibrillas/enzimología , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estabilidad de EnzimasRESUMEN
Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analyses of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in an m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.
Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glutamina , Proteínas Nucleares , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismoRESUMEN
Tumor cells undergo uncontrolled proliferation driven by enhanced anabolic metabolism including glycolysis and glutaminolysis. Targeting these pathways to inhibit cancer growth is a strategy for cancer treatment. Critically, however, tumor-responsive T cells share metabolic features with cancer cells, making them susceptible to these treatments as well. Here, we assess the impact on anti-tumor T cell immunity and T cell exhaustion by genetic ablation of lactate dehydrogenase A (LDHA) and glutaminase1 (GLS1), key enzymes in aerobic glycolysis and glutaminolysis. Loss of LDHA severely impairs expansion of T cells in response to tumors and chronic infection. In contrast, T cells lacking GLS1 can compensate for impaired glutaminolysis by engaging alternative pathways, including upregulation of asparagine synthetase, and thus efficiently respond to tumor challenge and chronic infection as well as immune checkpoint blockade. Targeting GLS1-dependent glutaminolysis, but not aerobic glycolysis, may therefore be a successful strategy in cancer treatment, particularly in combination with immunotherapy.
Asunto(s)
Glutaminasa , Glutamina , Glucólisis , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutamina/metabolismo , Animales , Ratones , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Línea Celular Tumoral , InmunidadRESUMEN
BACKGROUND: Colorectal cancer (CRC) and its chemoresistance pose significant threats to human health. Gegen Qinlian Decoction (GQD) is frequently employed alongside chemotherapy drugs for the treatment of CRC and various intestinal disorders. Despite its widespread use, there is limited research investigating the mechanisms through which GQD reverses chemoresistance. PURPOSE: This study investigated the mechanism by which GQD reverses oxaliplatin (OXA) resistance in CRC. METHODS: A YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-knockdown OXA-resistant cell line was constructed by lentivirus to clarify YTHDF1-mediated chemoresistance through the regulation of glutaminase 1 (GLS1). The efficacy of GQD in reversing OXA resistance in CRC in vitro was evaluated by Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, and glutaminase activity assays. In vivo validation was performed by constructing tumor xenografts in nude mice with OXA-resistant cells. In addition, mouse feces were collected and a 16S rDNA assay was performed to assess the regulation of intestinal flora by GQD. RESULTS: Overexpression of YTHDF1 upregulated GLS1 expression and induced OXA-resistance in CRC. GQD induced apoptosis in LoVo/OXAR, increased OXA accumulation in LoVo/OXAR, inhibited expression of YTHDF1 and GLS1 when administered alone and in combination with OXA, and suppressed GLS1 activity to reverse drug resistance with good synergistic effects. GQD and OXA combination or GLS1 inhibitor alleviated OXA toxicity, reduced the volume of tumor xenografts in nude mice, inhibited YTHDF1 and GLS1 protein expression and GLS1 activity, adjusted the intestinal flora, and significantly reversed the increased Firmicutes/Bacteroidetes ratio. CONCLUSION: GQD has shown superior efficacy in reversing OXA-resistance and increasing sensitivity. These findings indicate that the therapy combined with GQD has potential utility in the treatment of OXA-resistant CRC.
Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Medicamentos Herbarios Chinos , Glutaminasa , Ratones Desnudos , Oxaliplatino , Proteínas de Unión al ARN , Oxaliplatino/farmacología , Animales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Adenosina/análogos & derivadosRESUMEN
OBJECTIVE: The metabolic reprogramming of acute myeloid leukemia (AML) cells is a compensatory adaptation to meet energy requirements for rapid proliferation. This study aimed to examine the synergistic effects of glutamine deprivation and metformin exposure on AML cells. METHODS: SKM-1 cells (an AML cell line) were subjected to glutamine deprivation and/or treatment with metformin or bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES, a glutaminase inhibitor) or cytarabine. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis and reactive oxygen species (ROS) by flow cytometry. Western blotting was conducted to examine the levels of apoptotic proteins, including cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP). Moreover, the human long noncoding RNA (lncRNA) microarray was used to analyze gene expression after glutamine deprivation, and results were confirmed with quantitative RT-PCR (qRT-PCR). The expression of metallothionein 2A (MT2A) was suppressed using siRNA. Cell growth and apoptosis were further detected by CCK-8 assay and flow cytometry, respectively, in cells with MT2A knockdown. RESULTS: Glutamine deprivation or treatment with BPTES inhibited cell growth and induced apoptosis in SKM-1 cells. The lncRNA microarray result showed that the expression of MT family genes was significantly upregulated after glutamine deprivation. MT2A knockdown increased apoptosis, while proliferation was not affected in SKM-1 cells. In addition, metformin inhibited cell growth and induced apoptosis in SKM-1 cells. Both glutamine deprivation and metformin enhanced the sensitivity of SKM-1 cells to cytarabine. Furthermore, the combination of glutamine deprivation with metformin exhibited synergistic antileukemia effects on SKM-1 cells. CONCLUSION: Targeting glutamine metabolism in combination with metformin is a promising new therapeutic strategy for AML.