Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 3(10): e907, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818879

RESUMEN

Clickable glutathione is a glutathione-derived chemical probe designed to identify and analyze protein S-glutathionylation, a major cysteine oxidation in redox signaling. An engineered glutathione synthetase mutant (GS M4) is used to synthesize clickable glutathione in cells or in vitro, which affords utility via click chemistry to detect, identify, and quantify glutathionylation on individual or global proteins in biochemical and mass spectrometric analyses. The clickable glutathione approach is valuable for the unequivocal identification of glutathionylated cysteines, among many reversible cysteine oxoforms, via the direct enrichment and detection of glutathionylated proteins or peptides. Clickable glutathione, in combination with GS M4, has demonstrated utility in the mass-spectrometry-based discovery and profiling of new proteins and cysteines for glutathionylation in cell lines in response to physiologic and oxidative stress. The approach is versatile and applicable to validating the glutathionylation of proteins and cysteines in other biochemical analysis beside mass spectrometry. Here, we describe the applications of clickable glutathione and provide detailed protocols for the identification, profiling, and detection of glutathionylated proteins and cysteines. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of glutathionylated cysteine in individual proteins in vitro Basic Protocol 2: Proteomic identification and quantification of glutathionylation Basic Protocol 3: Biochemical validation of glutathionylation in cells.


Asunto(s)
Cisteína , Proteómica , Cisteína/metabolismo , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Glutatión/química , Glutatión/metabolismo , Proteínas/metabolismo , Glutatión Sintasa/genética , Glutatión Sintasa/química , Glutatión Sintasa/metabolismo
2.
Proteins ; 90(8): 1547-1560, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35277888

RESUMEN

Glutathione (GSH) is synthesized in two ATP-dependent reactions by glutamate-cysteine ligase (Gcl) and glutathione synthetase (Gs). Myxococcus xanthus, a gram-negative bacterium belonging to δ-proteobacteria, possesses mxGcl and mxGs, which have high sequence identity with the enzymes from plants and bacteria, respectively. MxGcl2 was activated by Mn2+ , but not by Mg2+ , and stabilized in the presence of 5 mM Mn2+ or Mg2+ . Sequence comparison of mxGcl2 and Brassica juncea Gcl indicated that they have the same active site residues, except for Tyr330, which interacts with Cys and which in mxGcl2 is represented by Leu267. The substitution of Leu267 with Tyr resulted in the loss of mxGcl2 activity, but that with Met (found in cyanobacterial Gcls) increased the mxGcl2 affinity for Cys. GSH and its oxidized form GSSG equally inhibited the activity of mxGcl2; the inhibition was augmented by ATP at concentrations >3 mM. Buthionine sulfoximine inactivated mxGcl2 with Ki  = 2.1 µM, which was lower than those for Gcls from other organisms. The mxGcl2 activity was also suppressed by pyrophosphate and polyphosphates. MxGs was a dimer, and its activity was induced by Mg2+ but strongly inhibited by Mn2+ even in the presence of 10 mM Mg2+ . MxGs was inhibited by GSSG at Ki  = 3.6 mM. Approximately 1 mM GSH was generated with 3 units of mxGcl2 and 6 units of mxGs from 5 mM Glu, Cys, and Gly, and 10 mM ATP. Our results suggest that GSH production in M. xanthus mostly depends on mxGcl2 activity.


Asunto(s)
Glutamato-Cisteína Ligasa , Myxococcus xanthus , Adenosina Trifosfato , Glutamato-Cisteína Ligasa/química , Glutamato-Cisteína Ligasa/genética , Glutatión/química , Disulfuro de Glutatión , Glutatión Sintasa/química , Glutatión Sintasa/genética
3.
Appl Biochem Biotechnol ; 185(2): 385-395, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29164506

RESUMEN

Glutathione (GSH) is an important reducing agent in the living cells. It is synthesized by a two-step reaction and requires two molecules of adenosine triphosphate (ATP) for one molecule GSH. The enzymatic cascade reaction in vitro is a promising approach to achieve a high titer and limit side reactions; although, a cost-effective phosphate donor for ATP regeneration is required. Triphosphate (PolyP(3)), tetraphosphate (PolyP(4)), and hexametaphosphate (PolyP(6)) were investigated in this study. Triphosphate inhibited the bifunctional GSH synthetase (GshF) from Streptococcus agalactiae, while no significant inhibition was observed by adding hexametaphosphate. The polyphosphate kinase from Corynebacterium glutamicum was hence investigated to use hexametaphosphate for regeneration of ATP. Further, the orthogonal experiment, which includes seven factors (buffer concentration, pH value, ADP concentration, GshF dosage, polyphosphate kinase (PPK) dosage, reaction temperature, substrate ratio of amino acid, and reaction times), indicated that the capacity of buffer is the most significant factor of the reaction conditions for enzymatic production of glutathione coupling with a PPK-based ATP regeneration system. After optimizing the Mg2+ concentration, the reaction was scaled up to 250 mL in a stirred reactor with pH feedback control to stabilize the pH value of reaction system and nitrogen protection to avoid the oxidation of product. A yield of 12.32 g/L was achieved. This work provided a potential GshF-based enzymatic way coupling the PPK-based ATP regeneration to product GSH in the optimal conditions towards cost-effectiveness at the industrial scale.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Glutatión Sintasa/química , Glutatión/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Polifosfatos/química , Streptococcus agalactiae/enzimología
4.
Org Biomol Chem ; 14(46): 10886-10893, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27812596

RESUMEN

Protein glutathionylation is one of the major cysteine oxidative modifications in response to reactive oxygen species (ROS). We recently developed a clickable glutathione approach for detecting glutathionylation by using a glutathione synthetase mutant (GS M4) that synthesizes azido-glutathione (γGlu-Cys-azido-Ala) in situ in cells. In order to demonstrate the versatility of clickable glutathione and to increase the chemical tools for detecting glutathionylation, we sought to develop clickable glutathione that uses tetrazine-alkene bioorthogonal chemistry. Here we report two alkene-containing glycine surrogates (allyl-Gly and allyl-Ser) for the biosynthesis of clickable glutathione and their use for detection, enrichment, and identification of glutathionylated proteins. Our results provide chemical tools (allyl-Gly and allyl-Ser for GS M4) for versatile characterization of protein glutathionylation. In addition, we show that the active site of GS can be tuned to introduce a small size chemical tag on glutathione for exploring glutathione function in cells.


Asunto(s)
Alquenos/química , Glutatión/química , Glutatión/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Dominio Catalítico , Química Clic , Cisteína/metabolismo , Glutatión Sintasa/química , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutación
5.
Mol Biosyst ; 12(8): 2471-80, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27216279

RESUMEN

Glucose metabolism and mitochondrial function are closely interconnected with cellular redox-homeostasis. Although glucose starvation, which mimics ischemic conditions or insufficient vascularization, is known to perturb redox-homeostasis, global and individual protein glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. In this report, we use our clickable glutathione approach, which forms clickable glutathione (azido-glutathione) by using a mutant of glutathione synthetase (GS M4), for detection and identification of protein glutathionylation in response to glucose starvation. We found that protein glutathionylation is readily induced in HEK293 cells in response to low glucose concentrations when mitochondrial reactive oxygen species (ROS) are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Proteomic and biochemical analysis identified over 1300 proteins, including SMYD2, PP2Cα, and catalase. We further showed that PP2Cα is glutathionylated at C314 in a C-terminal domain, and PP2Cα C314 glutathionylation disrupts the interaction with mGluR3, an important glutamate receptor associated with synaptic plasticity.


Asunto(s)
Glucosa/metabolismo , Glutatión/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Catálisis , Dominio Catalítico , Expresión Génica , Glutatión Sintasa/química , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 2C/química , Proteína Fosfatasa 2C/metabolismo , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo
6.
Comb Chem High Throughput Screen ; 18(5): 492-504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26220832

RESUMEN

Malaria is the world's most fatal disease - causing up to 2.7 million deaths annually all over the world. The ability of organisms to develop resistance against existing antimalarial drugs exacerbates the problem. There is a clear cut need for more effective, affordable and accessible drugs that act by novel modes of action. Glutathione synthetase (GS) from Plasmodium falciparum represents an important potential drug target due to its defensive role; hence ceasing the respective metabolic step will destroy the parasite. A three dimensional model of Plasmodium GS was constructed by de novo modelling method and potential GS inhibitors were identified from a library of glutathione (GSH) analogues retrieved from Ligand-info database and filtered using Lipinski and ADME rules. Two common feature pharmacophore models were generated from the individual inhibitor clusters to provide insight into the key pharmacophore features that are crucial for the GS inhibition. Molecular docking of selective compounds into the predicted GS binding site revealed that the compound CMBMB was the best GS inhibitor when compared to the standard reference Chloroquine (CQ). This was taken as indicating that CMBMB was the best effective and safest drug against P. falciparum.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Glutatión Sintasa/antagonistas & inhibidores , Glutatión/farmacología , Plasmodium falciparum/efectos de los fármacos , Secuencia de Aminoácidos , Antimaláricos/química , Sitios de Unión/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Glutatión/química , Glutatión Sintasa/química , Glutatión Sintasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Alineación de Secuencia , Relación Estructura-Actividad
7.
Protein J ; 33(5): 403-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070563

RESUMEN

The obligate homodimer human glutathione synthetase (hGS) provides an ideal system for exploring the role of protein-protein interactions in the structural stability, activity and allostery of enzymes. The two active sites of hGS, which are 40 Šapart, display allosteric modulation by the substrate γ-glutamylcysteine (γ-GC) during the synthesis of glutathione, a key cellular antioxidant. The two subunits interact at a relatively small dimer interface dominated by electrostatic interactions between S42, R221, and D24. Alanine scans of these sites result in enzymes with decreased activity, altered γ-GC affinity, and decreased thermal stability. Molecular dynamics simulations indicate these mutations disrupt interchain bonding and impact the tertiary structure of hGS. While the ionic hydrogen bonds and salt bridges between S42, R221, and D24 do not mediate allosteric communication in hGS, these interactions have a dramatic impact on the activity and structural stability of the enzyme.


Asunto(s)
Glutatión Sintasa/química , Glutatión Sintasa/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Cristalización , Dimerización , Estabilidad de Enzimas , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Electricidad Estática
8.
Biochem J ; 450(1): 63-72, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23170977

RESUMEN

Glutathione biosynthesis catalysed by GCL (glutamate-cysteine ligase) and GS (glutathione synthetase) is essential for maintaining redox homoeostasis and protection against oxidative damage in diverse eukaroytes and bacteria. This biosynthetic pathway probably evolved in cyanobacteria with the advent of oxygenic photosynthesis, but the biochemical characteristics of progenitor GCLs and GSs in these organisms are largely unexplored. In the present study we examined SynGCL and SynGS from Synechocystis sp. PCC 6803 using steady-state kinetics. Although SynGCL shares ~15% sequence identity with the enzyme from plants and α-proteobacteria, sequence comparison suggests that these enzymes share similar active site residues. Biochemically, SynGCL lacks the redox regulation associated with the plant enzymes and functions as a monomeric protein, indicating that evolution of redox regulation occurred later in the green lineage. Site-directed mutagenesis of SynGCL establishes this enzyme as part of the plant-like GCL family and identifies a catalytically essential arginine residue, which is structurally conserved across all forms of GCLs, including those from non-plant eukaryotes and γ-proteobacteria. A reaction mechanism for the synthesis of γ-glutamylcysteine by GCLs is proposed. Biochemical and kinetic analysis of SynGS reveals that this enzyme shares properties with other prokaryotic GSs. Initial velocity and product inhibition studies used to examine the kinetic mechanism of SynGS suggest that it and other prokaryotic GSs uses a random ter-reactant mechanism for the synthesis of glutathione. The present study provides new insight on the molecular mechanisms and evolution of glutathione biosynthesis; a key process required for enhancing bioenergy production in photosynthetic organisms.


Asunto(s)
Proteínas Bacterianas/química , Glutamato-Cisteína Ligasa/química , Glutatión Sintasa/química , Glutatión/química , Synechocystis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/biosíntesis , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Cinética , Datos de Secuencia Molecular , Planta de la Mostaza/enzimología , Mutagénesis Sitio-Dirigida , Fotosíntesis , Proteínas de Plantas/química , Alineación de Secuencia , Synechocystis/metabolismo
9.
PLoS One ; 7(10): e46580, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23091597

RESUMEN

Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (k(m) 0,19; wild-type) to ß-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for ß-Ala (k(m) 0,07) and lowered the affinity for Gly (k(m) 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (k(m) 0,23) as a substrate, while affinity to Gly was preserved (k(m) 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event.


Asunto(s)
Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Mutagénesis Sitio-Dirigida , Péptido Sintasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Activación Enzimática , Glutatión Sintasa/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
10.
J Mol Biol ; 416(4): 486-94, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22226834

RESUMEN

Glutathione is an intracellular redox-active tripeptide thiol with a central role in cellular physiology across all kingdoms of life. Glutathione biosynthesis has been traditionally viewed as a conserved process relying on the sequential activity of two separate ligases, but recently, an enzyme (GshF) that unifies both necessary reactions in one platform has been identified and characterized in a number of pathogenic and free-living bacteria. Here, we report crystal structures of two prototypic GshF enzymes from Streptococcus agalactiae and Pasteurella multocida in an effort to shed light onto the structural determinants underlying their bifunctionality and to provide a structural framework for the plethora of biochemical and mutagenesis studies available for these enzymes. Our structures reveal how a canonical bacterial GshA module that catalyzes the condensation of L-glutamate and L-cysteine to γ-glutamylcysteine is linked to a novel ATP-grasp-like module responsible for the ensuing formation of glutathione from γ-glutamylcysteine and glycine. Notably, we identify an unprecedented subdomain in the ATP-grasp module of GshF at the interface of the GshF dimer, which is poised to mediate intersubunit communication and allosteric regulation of enzymatic activity. Comparison of the two GshF structures and mapping of structure-function relationships reveal that the bifunctional GshF structural platform operates as a dynamic dimeric assembly.


Asunto(s)
Glutatión/biosíntesis , Pasteurella multocida/enzimología , Streptococcus agalactiae/enzimología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Cisteína/metabolismo , Dipéptidos/metabolismo , Glutamato-Cisteína Ligasa/química , Ácido Glutámico/metabolismo , Glutatión Sintasa/química , Glicina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
11.
Int J Mol Sci ; 12(9): 6312-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016660

RESUMEN

Glutathione synthetases catalyze the ATP-dependent synthesis of glutathione from l-γ-glutamyl- l-cysteine and glycine. Although these enzymes have been sequenced and characterized from a variety of biological sources, their exact catalytic mechanism is not fully understood and nothing is known about their adaptation at extremophilic environments. Glutathione synthetase from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhGshB) has been expressed, purified and successfully crystallized. An overall improvement of the crystal quality has been obtained by adapting the crystal growth conditions found with vapor diffusion experiments to the without-oil microbatch method. The best crystals of PhGshB diffract to 2.34 Å resolution and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 83.28 Å, b = 119.88 Å, c = 159.82 Å. Refinement of the model, obtained using phases derived from the structure of the same enzyme from Escherichia coli by molecular replacement, is in progress. The structural determination will provide the first structural characterization of a psychrophilic glutathione synthetase reported to date.


Asunto(s)
Proteínas Bacterianas/química , Cristalización/métodos , Glutatión Sintasa/química , Pseudoalteromonas/enzimología , Difracción de Rayos X/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Pseudoalteromonas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Biochem Biophys Res Commun ; 411(3): 536-42, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21771585

RESUMEN

Human glutathione synthetase (hGS) catalyzes the second ATP-dependent step in the biosynthesis of glutathione (GSH) and is negatively cooperative to the γ-glutamyl substrate. The hGS active site is composed of three highly conserved catalytic loops, notably the alanine rich A-loop. Experimental and computational investigations of the impact of mutation of Asp458 are reported, and thus the role of this A-loop residue on hGS structure, activity, negativity cooperativity and stability is defined. Several Asp458 hGS mutants (D458A, D458N and D458R) were constructed using site-directed mutagenesis and their activities determined (10%, 15% and 7% of wild-type hGS, respectively). The Michaelis-Menten constant (K(m)) was determined for all three substrates (glycine, GAB and ATP): glycine K(m) increased by 30-115-fold, GAB K(m) decreased by 8-17-fold, and the ATP K(m) was unchanged. All Asp458 mutants display a change in cooperativity from negative cooperativity to non-cooperative. All mutants show similar stability as compared to wild-type hGS, as determined by differential scanning calorimetry. The findings indicate that Asp458 is essential for hGS catalysis and that it impacts the allostery of hGS.


Asunto(s)
Ácido Aspártico/química , Glutatión Sintasa/química , Regulación Alostérica , Secuencia de Aminoácidos , Ácido Aspártico/genética , Catálisis , Dominio Catalítico , Glutatión Sintasa/genética , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
13.
Biochem Biophys Res Commun ; 410(3): 597-601, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21683691

RESUMEN

It was hypothesized that residues Val44 and Val45 serve as important residues for human glutathione synthetase (hGS) function and stability given their location at the dimer interface of this enzyme. Computational studies suggest that mutation at Val45 has more impact on the structure and stability of hGS than does mutation at Val44. Experimentally, enzymes with mutations at the 44 and or 45 positions of hGS were prepared, purified and assayed for initial activity. Val45 position mutations (either to alanine or tryptophan) have a greater impact on enzyme activity than do mutations at Val44. Differential scanning calorimetry experiments reveal a loss of stability in all mutant enzymes, with V45 mutations being less stable than the corresponding Val44 mutations. The γ-GluABA substrate affinity remains unaltered in V44A and V45A mutant enzymes, but increases when tryptophan is introduced at either of these positions. Hill coefficients trend towards less negative cooperativity with the exception of V45W mutant hGS. These results imply that residues V44 and V45 are located along the allosteric pathway of this negatively cooperative dimeric enzyme, that their mutation impacts the allosteric pathway more than it does the active site of hGS, and that these residues (and by extension the dimer interface in which they are located) are integral to the stability of human glutathione synthetase.


Asunto(s)
Glutatión Sintasa/química , Valina/química , Regulación Alostérica , Dominio Catalítico/genética , Estabilidad de Enzimas/genética , Glutatión Sintasa/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Mutación , Multimerización de Proteína , Estructura Secundaria de Proteína , Valina/genética
14.
Biochem Biophys Res Commun ; 400(4): 511-6, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20800579

RESUMEN

Experimental kinetics and computational modeling of human glutathione synthetase (hGS) support the significant role of the G-loop glycine triad (G369, G370, G371) for activity of this ATP-grasp enzyme. Enzyme kinetic experiments indicate that G369V and G370V mutant hGS have little activity (<0.7 and 0.3%, respectively, versus wild-type hGS). However, G371V retains ∼13% of the activity of wild-type hGS. With respect to G-loop:A-loop interaction in hGS, mutations at Gly369 and Gly370 decrease ligand binding and prevent active site closure and protection. This research indicates that Gly369 and Gly370 have essential roles in hGS, while Gly371 has a lesser involvement. Implications for glycine-rich ensembles in other phosphate-binding enzymes are discussed.


Asunto(s)
Glutatión Sintasa/química , Glicina/química , Secuencia de Aminoácidos , Glutatión Sintasa/genética , Glicina/genética , Humanos , Mutación , Conformación Proteica
15.
Mol Biochem Parasitol ; 170(2): 93-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20045436

RESUMEN

Glutathione synthetase catalyses the synthesis of the low molecular mass thiol glutathione from l-gamma-glutamyl-l-cysteine and glycine. We report the crystal structure of the dimeric enzyme from Trypanosoma brucei in complex with the product glutathione. The enzyme belongs to the ATP-grasp family, a group of enzymes known to undergo conformational changes upon ligand binding. The T. brucei enzyme crystal structure presents two dimers in the asymmetric unit. The structure reveals variability in the order and position of a small domain, which forms a lid for the active site and serves to capture conformations likely to exist during the catalytic cycle. Comparisons with orthologous enzymes, in particular from Homo sapiens and Saccharomyces cerevisae, indicate a high degree of sequence and structure conservation in part of the active site. Structural differences that are observed between the orthologous enzymes are assigned to different ligand binding states since key residues are conserved. This suggests that the molecular determinants of ligand recognition and reactivity are highly conserved across species. We conclude that it would be difficult to target the parasite enzyme in preference to the host enzyme and therefore glutathione synthetase may not be a suitable target for antiparasitic drug discovery.


Asunto(s)
Glutatión Sintasa/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Glutatión/química , Humanos , Redes y Vías Metabólicas , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
16.
J Plant Physiol ; 167(6): 480-7, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20036031

RESUMEN

Glutathione (GSH) is an abundant metabolite and a major antioxidant in plant cells. However, in the Leguminosae, homoglutathione (hGSH) may replace glutathione (GSH) partially or completely. To date, cowpea (Vigna unguiculata) has been considered a non-hGSH-producing species, and no hGSHS cDNA has been isolated. Here we report on the cloning of a full-length cDNA coding for a hGSHS (EC 6.3.2.23) and the cloning of a partial cDNA coding for a putative glutathione synthetase (GSHS; EC 6.3.2.3) in cowpea leaf extracts. These cDNAs possess, respectively, the leucine/proline hGSHS signature and the alanine/alanine GSHS signature at the 3' end. Expression analysis showed a significant up-regulation of hGSHS during progressive drought stress that could be directly related to the drought tolerance of the cowpea cultivar used, while GSHS was mainly constitutively expressed. Nevertheless, quantification of low-molecular-weight thiols confirmed the previous findings that cowpea is essentially a GSH producing plant, as no hGSH was detected in the leaves. These findings raise new questions regarding the function, activity and substrate specificity of the cloned hGSHS cDNA. These questions are discussed.


Asunto(s)
Sequías , Fabaceae/enzimología , Fabaceae/metabolismo , Glutatión Sintasa/genética , Péptido Sintasas/genética , Hojas de la Planta/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión Sintasa/química , Glutatión Sintasa/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
17.
Plant Cell ; 21(11): 3450-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19948790

RESUMEN

The redox active peptide glutathione is ubiquitous in nature, but some plants also synthesize glutathione analogs in response to environmental stresses. To understand the evolution of chemical diversity in the closely related enzymes homoglutathione synthetase (hGS) and glutathione synthetase (GS), we determined the structures of soybean (Glycine max) hGS in three states: apoenzyme, bound to gamma-glutamylcysteine (gammaEC), and with hGSH, ADP, and a sulfate ion bound in the active site. Domain movements and rearrangement of active site loops change the structure from an open active site form (apoenzyme and gammaEC complex) to a closed active site form (hGSH*ADP*SO(4)(2-) complex). The structure of hGS shows that two amino acid differences in an active site loop provide extra space to accommodate the longer beta-Ala moiety of hGSH in comparison to the glycinyl group of glutathione. Mutation of either Leu-487 or Pro-488 to an Ala improves catalytic efficiency using Gly, but a double mutation (L487A/P488A) is required to convert the substrate preference of hGS from beta-Ala to Gly. These structures, combined with site-directed mutagenesis, reveal the molecular changes that define the substrate preference of hGS, explain the product diversity within evolutionarily related GS-like enzymes, and reinforce the critical role of active site loops in the adaptation and diversification of enzyme function.


Asunto(s)
Glutatión Sintasa/química , Glutatión/biosíntesis , Glycine max/enzimología , Péptido Sintasas/química , Adaptación Fisiológica/fisiología , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos/fisiología , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Cristalografía por Rayos X , Evolución Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Oxidación-Reducción , Estrés Oxidativo/fisiología , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Filogenia , Estructura Terciaria de Proteína/fisiología , Proteómica , Glycine max/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-19574637

RESUMEN

gamma-Glutamylcysteine synthetase-glutathione synthetase (gammaGCS-GS) is a bifunctional enzyme that catalyzes two consecutive steps of ATP-dependent peptide formation in glutathione biosynthesis. Streptococcus agalactiae gammaGCS-GS is a target for the development of potential therapeutic agents. gammaGCS-GS was crystallized using the sitting-drop vapour-diffusion method. The crystals grew to dimensions of 0.3 x 0.2 x 0.2 mm under reducing conditions with 5 mM TCEP. X-ray data were collected to 2.8 A resolution from a tetragonal crystal that belonged to space group I4(1).


Asunto(s)
Glutamato-Cisteína Ligasa/química , Glutatión Sintasa/química , Streptococcus agalactiae/enzimología , Cristalización , Cristalografía por Rayos X
19.
J Biol Chem ; 282(23): 17157-65, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17452339

RESUMEN

Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.


Asunto(s)
Arabidopsis/enzimología , Glutatión Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Glutatión Sintasa/química , Glutatión Sintasa/genética , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido
20.
Biochem Biophys Res Commun ; 353(2): 450-6, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17188241

RESUMEN

Conformational changes of three flexible loops (G, A, and S) in human glutathione synthetase (hGS) arise to accommodate the substrates inside the active site. The crystal structure of hGS, a member of the ATP-grasp superfamily, has been reported only for the product-enzyme complex. To study the function of the hGS loops, molecular dynamics simulations are performed on three different conformational models: unbound enzyme, reactant-enzyme, and product-enzyme complex of hGS. The conformational changes among the three models are analyzed and the roles of the loops during the catalytic process are described. The modeled structures of hGS show that the central portions of the G- and A-loop have a double role in the reactant complex conformation: they bind the substrates and simultaneously interact with each other through an extensive network of hydrogen bonds. The present study proposes that these favorable loop-ligand and loop-loop interactions are required for opening and closing of the active site of hGS. Additionally, this research identifies important amino acid residues and explains their function within the catalytic loops of hGS.


Asunto(s)
Glutatión Sintasa/química , Glutatión Sintasa/ultraestructura , Modelos Químicos , Modelos Moleculares , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Catálisis , Simulación por Computador , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA