Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.342
Filtrar
1.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705354

RESUMEN

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Asunto(s)
Control Biológico de Vectores , Rabdítidos , Animales , Rabdítidos/fisiología , Poaceae/parasitología , Mariposas Nocturnas/parasitología , Gorgojos/parasitología , New Jersey
2.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704126

RESUMEN

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Asunto(s)
Receptores Odorantes , Gorgojos , Animales , Gorgojos/metabolismo , Gorgojos/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Compuestos Orgánicos Volátiles/metabolismo , Masculino , Filogenia , Femenino , Arecaceae/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Antenas de Artrópodos/metabolismo , Ésteres/metabolismo
3.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770623

RESUMEN

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Asunto(s)
Insecticidas , Neonicotinoides , Temperatura , Insecticidas/farmacología , Animales , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Control de Insectos/métodos , Gorgojos/efectos de los fármacos , Tiazoles/farmacología
4.
Neotrop Entomol ; 53(3): 461-468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656593

RESUMEN

We report the first record of the occurrence of the banana weevil, Cosmopolites sordidus (Germar, 1823) (Coleoptera: Curculionidae), an economically important pest of bananas (Musa spp.), from Fifa Mountains in Saudi Arabia. Moreover, we recorded the first observation of damage caused to bananas by C. sordidus in a banana farm in Jazan Province, southwestern Saudi Arabia, in March 2022. Molecular characterization using DNA sequences of the mitochondrial COI gene confirmed the morphological identification of C. sordidus. This discovery is considered a warning notice to prevent the potential establishment and spread of this dangerous pest in the banana cultivation regions in Saudi Arabia. Therefore, it is recommended that detection and monitoring of banana weevil should be undertaken in Saudi banana farms in order to restrict the dissemination of this weevil to other banana cultivation areas.


Asunto(s)
Musa , Gorgojos , Animales , Gorgojos/clasificación , Arabia Saudita , Musa/parasitología , Femenino , Masculino
5.
Neotrop Entomol ; 53(3): 682-693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656592

RESUMEN

Insecticides efficient against the target species while conserving natural enemies in the agroecosystem are required for IPM. With the imminent discontinuation of fipronil, a broad-spectrum insecticide, ethiprole, which belongs to the same group as phenylpyrazole (2B), and isocycloseram, a novel isoxazoline insecticide with distinct mode of action (30), provide options for controlling boll weevil. The susceptibility of the boll weevil, Anthonomus grandis grandis (Boh.), and two natural enemies [Eriopis connexa (Germar) and Bracon vulgaris Ashmead] to these insecticides were studied. Furthermore, the survival and biological traits of the lady beetle, E. connexa, exposed to fipronil, isocycloseram, and ethiprole were assessed. The LC50s values for fipronil, ethiprole, and isocycloseram for A. grandis grandis were 2.71, 0.32, and 0.025 mg a.i./L, respectively; 0.86, > 200, and 3.21 mg a.i./L for E. connexa; and 2.31, 592.94, and 0.18 mg a.i./L for B. vulgaris, respectively. The recommended rates of ethiprole did not cause mortality in adult lady beetles, although fipronil and isocycloseram were highly toxic. Lady beetle larvae and adults survived more than 80% when exposed to dried residues of ethiprole, but less than 10% when exposed to fipronil and isocycloseram. Lady beetle larvae development, reproduction, and predation rates of adults were similar between ethiprole and the control group. Although fipronil and ethiprole belong to the same insecticide group, the difference in toxicity to boll weevils and natural enemies is presented and discussed. Ethiprole was more toxic to boll weevils than to its parasitoid and lady beetle, and isocycloseram was highly toxic to all three species.


Asunto(s)
Insecticidas , Gorgojos , Animales , Gorgojos/efectos de los fármacos , Isoxazoles/toxicidad , Pirazoles/toxicidad , Escarabajos/efectos de los fármacos
6.
Plant Sci ; 344: 112079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588981

RESUMEN

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Modificadas Genéticamente , Gorgojos , Gossypium/genética , Gossypium/parasitología , Animales , Gorgojos/genética , Plantas Modificadas Genéticamente/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/efectos de los fármacos , Bacillus thuringiensis/genética , Control Biológico de Vectores
7.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609906

RESUMEN

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Asunto(s)
Saccharomycetales , Gorgojos , Animales , Proteínas Fluorescentes Verdes/genética , Citometría de Flujo
8.
Molecules ; 29(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611736

RESUMEN

Thuja occidentalis L. essential oil (EOTO) and its compounds, such as terpinyl acetate, bornyl acetate, and ß-thujone, are claimed to be highly effective against some storage pests, sanitary insects, or pests of fruit trees, while data about its use in protecting field crops are very scarce. There is also a lack of information in the literature about the insecticidal value of water extracts from T. occidentalis (WETOs). Both essential oils (EOs) and water extracts (WEs) from various plants have advantages and disadvantages in terms of their use as insecticides. EOs are generally more effective, but their preparation is more complicated and quite expensive. In turn, WEs are simple to prepare and cheap, but they often have limited effectiveness. Moreover, significant differences in responses exist depending on the species of the donor plant, the method of preparing the extract, its concentration, the species of the pest being controlled, the developmental stage, and even the gender of the pest. The goals of the research were to assess the effect of EOTO and WETOs prepared from dry and fresh matter on the mortality, feeding, and body mass changes of important crop pests, i.e., the black bean aphid, pea leaf weevil, and Colorado potato beetle (CPB), respectively, as well as on the mortality and voracity of non-target organism Asian lady beetle young larvae. EOTO showed significant aphicidal activity with LC50 = 0.8267% and 0.2453% after 42 h of the experiment for nymphs and wingless females of black bean aphid, respectively. Adults of CPB were more resistant to EOTO than aphids, with LC50 values for females equal to 1.5327% and 1.3113% after 48 h and after 72 h of the experiment. There was no significant effect of EOTO on CPB foraging. Calculated LC50 values for pea leaf weevil adults were lower than those for CPB (0.9638% and 0.8573% for males after 12 h and 24 h, respectively). In the case of this pest, a clear reduction in foraging was obtained, with higher concentrations of EOTO resulting in more pronounced reductions in foraging behavior. Concentrations of EOTO above 0.5%, which showed efficacy against the aphid, were lethal to 3-day-old larvae of the Asian lady beetle. WETOs, in turn, showed significant potential in inhibiting adult pea leaf weevil feeding, with very low or no effectiveness in reducing A. fabae and CPB, respectively.


Asunto(s)
Áfidos , Escarabajos , Insecticidas , Aceites Volátiles , Thuja , Gorgojos , Humanos , Adulto , Femenino , Masculino , Animales , Aceites Volátiles/farmacología , Insecticidas/farmacología
9.
Sci Rep ; 14(1): 8678, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622206

RESUMEN

This study emphasizes the phytochemical study of some locally available botanicals against maize weevils. Nine plant parts were collected from six plant species. The test plant powder (200 g) was suspended sequentially in 600 ml of petroleum ether, chloroform, acetone, methanol, and distilled water for 72 h with frequent agitation. Different concentrations of the crude extracts were applied to maize seeds at rates of 10 ml, 15 ml and 20 ml per 100 g. All treatments with different extracts at different rates of application showed significant differences (p < 0.05) in the cumulative mean percentage mortality of the maize weevil. The seed extract of Maesa lanceolata and Croton macrostachyus and the leaf extract of Clausena anisata showed cumulative percent mortality ranged 95.32-98.02% in 28 days after treatment application. There was no significant difference (p > 0.05) among all treatments for the prevention of F1 progeny emergence. In all extracts, Clausena anisata showed 100% inhibition of F1 progeny emergence. All treatments significantly reduced seed weight loss and damage. The treated maize seeds were germinated with an acceptable germination quality. In conclusion, an increased dosage of the extract resulted in significant mortality in maize weevils. The seed extracts of Maesa lanceolata and Croton macrostachyus and Clausena anisata leaf extract were observed to be the most promising botanical in protecting stored maize against maize weevil.


Asunto(s)
Escarabajos , Insecticidas , Plantas Medicinales , Gorgojos , Animales , Gorgojos/fisiología , Insecticidas/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
10.
Mol Ecol ; 33(9): e17341, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38576177

RESUMEN

Catastrophic flank collapses are recognized as important drivers of insular biodiversity dynamics, through the disruption of species ranges and subsequent allopatric divergence. However, little empirical data supports this conjecture, with their evolutionary consequences remaining poorly understood. Using genome-wide data within a population genomics and phylogenomics framework, we evaluate how mega-landslides have impacted evolutionary and demographic history within a species complex of weevils (Curculionidae) within the Canary Island of Tenerife. We reveal a complex genomic landscape, within which individuals of single ancestry were sampled in areas characterized by long-term geological stability, relative to the timing of flank collapses. In contrast, individuals of admixed ancestry were almost exclusively sampled within the boundaries of flank collapses. Estimated divergence times among ancestral populations aligned with the timings of mega-landslide events. Our results provide first evidence for a cyclical dynamic of range fragmentation and secondary contact across flank collapse landscapes, with support for a model where this dynamic is mediated by Quaternary climate oscillations. The context within which we reveal climate and topography to interact cyclically through time to shape the geographic structure of genetic variation, together with related recent work, highlights the importance of topoclimatic phenomena as an agent of diversification within insular invertebrates.


Asunto(s)
Genética de Población , Islas , Filogenia , Animales , Gorgojos/genética , Gorgojos/clasificación , Biodiversidad
11.
Pestic Biochem Physiol ; 200: 105829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582575

RESUMEN

Cowpea weevil, Callosobruchus maculatus, is the primary pest of stored cowpea seeds. The management of this infestation currently relies on insecticides, resulting in environmental pollution and selection of insecticide-resistant pests. Consequently, research efforts are being devoted to identify natural insecticides as sustainable and environment friendly alternatives for the control of C. maculatus. In this study, we explore the toxic effects of the nonhost seeds Parkia multijuga, Copaifera langsdorffii, Ormosia arborea, Amburana cearensis, Lonchocarpus guilleminianus, Sapindus saponaria, and Myroxylon peruiferum, on the cowpea weevil C. maculatus. Notably, all nonhost seeds led to reductions between 60 and 100% in oviposition by C. maculatus females. Additionally, the larvae were unable to penetrate the nonhost seeds. Artificial seeds containing 0.05% to 10% of cotyledon flour were toxic to C. maculatus larvae. Approximately 40% of larvae that consumed seeds containing 0.05% of O. arborea failed to develop, in contrast to control larvae. Proteomic analysis of A. cearensis and O. arborea seeds identify revealed a total of 371 proteins. From those, 237 are present in both seeds, 91 were exclusive to O. arborea seeds, and 43 were specific to A. cearensis seeds. Some of these proteins are related to defense, such as proteins containing the cupin domain and 11S seed storage protein. The in silico docking of cupin domain-containing proteins and 11S storage protein with N-acetylglucosamine (NAG)4 showed negative values of affinity energy, indicating spontaneous binding. These results showed that nonhost seeds have natural insecticide compounds with potential to control C. maculatus infestation.


Asunto(s)
Escarabajos , Insecticidas , Vigna , Gorgojos , Animales , Femenino , Insecticidas/toxicidad , Proteómica , Larva , Semillas/química
12.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675573

RESUMEN

The repellent capacity against Sitophilus zeamais and the in vitro inhibition on AChE of 11 essential oils, isolated from six plants of the northern region of Colombia, were assessed using a modified tunnel-type device and the Ellman colorimetric method, respectively. The results were as follows: (i) the degree of repellency (DR) of the EOs against S. zeamais was 20-68% (2 h) and 28-74% (4 h); (ii) the IC50 values on AChE were 5-36 µg/mL; likewise, the %inh. on AChE (1 µg/cm3 per EO) did not show any effect in 91% of the EO tested; (iii) six EOs (Bursera graveolens-bark, B. graveolens-leaves, B. simaruba-bark, Peperomia pellucida-leaves, Piper holtonii (1b*)-leaves, and P. reticulatum-leaves) exhibited a DR (53-74%) ≥ C+ (chlorpyrifos-61%), while all EOs were less active (8-60-fold) on AChE compared to chlorpyrifos (IC50 of 0.59 µg/mL). Based on the ANOVA/linear regression and multivariate analysis of data, some differences/similarities could be established, as well as identifying the most active EOs (five: B. simaruba-bark, Pep. Pellucida-leaves, P. holtonii (1b*)-leaves, B. graveolens-bark, and B. graveolens-leaves). Finally, these EOs were constituted by spathulenol (24%)/ß-selinene (18%)/caryophyllene oxide (10%)-B. simaruba; carotol (44%)/dillapiole (21%)-Pep. pellucida; dillapiole (81% confirmed by 1H-/13C-NMR)-P. holtonii; mint furanone derivative (14%)/mint furanone (14%)-B. graveolens-bark; limonene (17%)/carvone (10%)-B. graveolens-leaves.


Asunto(s)
Inhibidores de la Colinesterasa , Repelentes de Insectos , Aceites Volátiles , Sesquiterpenos Policíclicos , Animales , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colombia , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología , Gorgojos/enzimología , Gorgojos/efectos de los fármacos , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología
13.
Appl Environ Microbiol ; 90(4): e0153723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445862

RESUMEN

Many insect taxa cultivate fungi for food. Compared to well-known fungus cultivation in social insects, our knowledge on fungus cultivation in nonsocial insects is still limited. Here, we studied the nutritional potentials of the fungal cultivar, Penicillium herquei, for the larvae of its nonsocial insect farmer, Euops chinensis, a specialist on Japanese knotweed Reynoutria japonica. Overall, fungal hyphae and leaf rolls contained significantly higher carbon (C), stable isotopes of C (δ13C), and nitrogen (δ15N) but significantly lower C/N ratios compared to unrolled leaves, whereas insect bodies contained significantly higher N contents but lower C and C/N ratios compared to other types of samples. The MixSIAR model indicated that fungal hyphae contributed a larger proportion (0.626-0.797) to the diet of E. chinensis larvae than leaf materials. The levels of ergosterol, six essential amino acids, seven nonessential amino acids, and three B vitamins tested in fungal hyphae and/or leaf rolls were significantly higher than in unrolled leaves and/or larvae. The P. herquei genome contains the complete set of genes required for the biosynthesis of ergosterol, the essential amino acids valine and threonine, nine nonessential amino acids, and vitamins B2 and B3, whereas some genes associated with five essential and one nonessential amino acid were lost in the P. herquei genome. These suggest that P. herquei is capable of providing the E. chinensis larvae food with ergosterol, amino acids, and B vitamins. P. herquei appears to be able to synthesize or concentrate these nutrients considering that they were specifically concentrated in fungal hyphae. IMPORTANCE: The cultivation of fungi for food has occurred across divergent insect lineages such as social ants, termites, and ambrosia beetles, as well as some seldom-reported solitary insects. Although the fungal cultivars of these insects have been studied for decades, the dietary potential of fungal cultivars for their hosts (especially for those nonsocial insects) is largely unknown. Our research on the mutualistic system Euops chinensis-Penicillium herquei represents an example of the diverse nutritional potentials of the fungal cultivar P. herquei in the diet of the larvae of its solitary host, E. chinensis. These results demonstrate that P. herquei has the potential to synthesize or concentrate ergosterol, amino acids, and B vitamins and benefits the larvae of E. chinensis. Our findings would shed light on poorly understood fungal cultivation mutualisms in nonsocial insects and underscore the nutritional importance of fungal cultivars in fungal cultivation mutualisms.


Asunto(s)
Escarabajos , Penicillium , Complejo Vitamínico B , Gorgojos , Animales , Gorgojos/microbiología , Larva/microbiología , Escarabajos/microbiología , Insectos/microbiología , Aminoácidos Esenciales , Simbiosis/genética , Dieta , Ergosterol
14.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536151

RESUMEN

The rape stem weevil (Ceutorhynchus asper Roel.) and its close relatives primarily breed on cruciferous plants and cause severe damage to rapeseed production. However, their genetic and molecular information is still scarce. Here, we generated mitogenomes for both C. asper and Ceutorhynchus albosuturalis. The lengths of the 2 mitochondrial genomes are 14,207 bp (C. asper) and 15,373 bp (C. albosuturalis), and both weevils exhibit identical numbers of protein-coding genes with the absence of trnI. A + T contents for both mitogenomes are high (80% and 79.9%, respectively). Haplotype and genetic distance analyses showed that the genetic differentiation of C. asper populations in northwestern China is low. Based on 5 datasets from mitogenomes, phylogenetic analyses with maximum-likelihood and Bayesian methods show that both species (C. asper and C. albosuturalis) fall in the CCCMS clade (Curculioninae, Conoderinae, Cossoninae, Molytinae, and Scolytinae) of Curculionidae and belong to clades H and I of the genus Ceutorhynchus, respectively. Larvae of the clade H weevils mainly are borers in petioles or stems of cruciferous plants, while larvae of the clade I weevils mainly inhabit the fruits of the same plants, suggesting that ecological niche specialization can play a critical role in the diversification of Ceutorhynchus species. This study generates baseline molecular and genetic information for future research of Ceutorhynchus-related taxa and provides insights into the phylogeny and evolution of Curculionidae.


Asunto(s)
Brassica rapa , Escarabajos , Genoma Mitocondrial , Gorgojos , Animales , Filogenia , Teorema de Bayes , Larva
15.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542842

RESUMEN

This study concentrates on assessing the insecticidal attributes of the γ-Al2O3 nanoparticles derived from the remnants of Mentha pulegium, which include essential oil, ethanolic extract, and plant waste. The synthesis of the γ-Al2O3 nanoparticles was executed using a direct sol-gel procedure, affirming the crystal structure according to extensive physicochemical analyses such as UV-Vis, XRD, FTIR, and SEM. Evaluation of the insecticidal activity in vitro was conducted against Xylosandrus crassiusculus, a pest that infests carob wood, utilizing strains from diverse forests in the Khenifra region, situated in the Moroccan Middle Atlas. The lethal doses 50 ranged from 40 mg/g to 68 mg/g, indicating moderate effectiveness compared to the commercial insecticide Permethrin. Optimization of the conditions for the efficiency of the γ-Al2O3 nanoparticles was determined using experimental plans, revealing that time, humidity, and temperature were influential factors in the lethal dose 50 of these nanomaterials. Moreover, this study encompasses the establishment of correlations using Principal Component Analysis (PCA) and Ascending Hierarchical Classification (AHC) among various geographic, biological, and physical data, amalgamating geographic altitude and γ-Al2O3 nanoparticle insecticide parameters, as well as the attributes of the mechanical tests conducted on the carob wood affected by insects. The correlations highlight the close connections between the effectiveness of the insecticide, mountain altitude, and the mechanical parameters that were examined. Ultimately, these nanoparticles demonstrate promising potential as alternative insecticides, thus opening up encouraging prospects for safeguarding against carob wood pests.


Asunto(s)
Escarabajos , Galactanos , Insecticidas , Mananos , Mentha pulegium , Nanopartículas , Gomas de Plantas , Gorgojos , Animales , Insecticidas/farmacología , Insecticidas/química , Mentha pulegium/química
16.
Sci Rep ; 14(1): 7561, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555364

RESUMEN

Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.


Asunto(s)
Escarabajos , Lauraceae , Persea , Gorgojos , Animales , Demografía
17.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433329

RESUMEN

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Asunto(s)
Escarabajos , Picea , Gorgojos , Animales , Sequías , Picea/microbiología , Corteza de la Planta/química , Enfermedades de las Plantas/microbiología , Terpenos , Fenoles , Noruega , Agua/análisis , Carbohidratos/análisis
18.
J Econ Entomol ; 117(2): 666-669, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437589

RESUMEN

The diel flight activity in Cathartus quadricollis (Guerin-Meneville) (Coleoptera: Silvanidae), a predator of two important pests in Hawaii, coffee berry borer, Hypothenemus hampei (Ferrari) and tropical nut borer, Hypothenemus obscurus (F.) (Coleoptera: Curculionidae: Scolytinae) was studied in a macadamia nut orchard using yellow sticky traps baited with pheromone and fungal volatile attractants. The study was conducted at different months throughout the year and at different times during the lunar cycle (new moon and full moon). Flight activity peaked in the late hours of the photophase into the early hours of the scotophase, between 1830 and 2000 h; flight activity also occurred but to a lesser extent in the early morning hours between 0700 and 1030 h. Numbers of captured C. quadricollis during periods of flight activity were negatively correlated with wind speed. The implications of these findings for the development of optimal pest management strategies including biological control are discussed.


Asunto(s)
Coffea , Escarabajos , Gorgojos , Animales , Escarabajos/fisiología , Macadamia , Hawaii , Gorgojos/fisiología
19.
Zootaxa ; 5415(2): 339-345, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38480199

RESUMEN

The introduction of non-native organisms into new areas may pose major threats to natural ecosystems. Therefore, continuous and careful national surveys for the interception of invasive non-native species are necessary. During the national survey of quarantine species in 2023, two new non-native ambrosia beetles, Anisandrus maiche (Kurentzov) and Xylosandrus compactus (Eichhoff), were recorded in Slovenia. Anisandrus maiche was recorded in three locations in the eastern part of Slovenia, with a total of 386 individuals. Three individuals of Xylosandrus compactus were collected in one location near the port of Koper. We discuss the possible pathways of introduction and dispersal.


Asunto(s)
Escarabajos , Gorgojos , Animales , Eslovenia , Ecosistema , Ambrosia
20.
Zootaxa ; 5410(2): 199-221, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480248

RESUMEN

Stephen L. Wood re-defined Platypus such that its members are native to realms outside of the Americas and transferred most Neotropical species out of that genus. I have come across 44 species that still remain, though, and these are treated here. In total, I report 49 new generic assignments, 30 of which are transfers out of Platypus. I propose 22 new synonymies, eight of which are Platypus species that are synonymized with previously transferred species. Six Neotropical species are left in Platypus, for reasons detailed in the text. These taxonomic acts affect the compositions of eight of the 11 Neotropical genera of core Platypodinae. The following species are transferred from Platypus Herbst, 1793: Cenocephalus dubiosus (Schedl, 1933) comb. nov., Cenocephalus neotruncatus (Schedl, 1972) comb. nov.; Costaroplatus barbosai (Schedl, 1972) comb. nov., Costaroplatus devius (Schedl, 1976) comb. nov., Costaroplatus mixtus (Schedl, 1976) comb. nov., Costaroplatus roppai (Schedl, 1978) comb. nov.; Epiplatypus bicaudatulus (Schedl, 1935) comb. nov., Epiplatypus carduus (Schedl, 1936) comb. nov., Epiplatypus complanus (Schedl, 1967) comb. nov., Epiplatypus grandiporus (Schedl, 1961) comb. nov., Epiplatypus insculptus (Schedl, 1967) comb. nov., Epiplatypus macroporus (Chapuis, 1865) comb. nov., Epiplatypus perforans (Schedl, 1961) comb. nov., Epiplatypus propinquus (Schedl, 1959) comb. nov., Epiplatypus quadrispinatus (Chapuis, 1865) comb. nov., Epiplatypus sallei (Chapuis, 1865) comb. nov., Epiplatypus sequius (Schedl, 1935) comb. nov.; Euplatypus detectus (Schedl, 1976) comb. nov., Euplatypus erraticus (Schedl, 1972) comb. nov., Euplatypus longulus (Chapuis, 1865) comb. nov., Euplatypus perplexus Bright, 1972 comb. nov., Euplatypus rugosifrons (Schedl, 1933) comb. nov., Euplatypus vexans (Schedl, 1972) comb. nov.; Megaplatypus asperatus (Schedl, 1976) comb. nov., Megaplatypus carinifer (Schedl, 1970), Megaplatypus durus (Schedl, 1936) comb. nov., Megaplatypus eversus (Wood, 1971) comb. nov., Megaplatypus gagates (Schedl, 1976) comb. nov., Megaplatypus irrepertus (Schedl, 1936) comb. nov., Megaplatypus lineaticornis (Schedl, 1936) comb. nov., Megaplatypus paramonovi (Schedl, 1972) comb. nov., Megaplatypus schedli (Wood, 1966) comb. nov., Megaplatypus vafer (Schedl, 1972) comb. nov.; Teloplatypus caligatus (Schedl, 1972) comb. nov. Costaroplatus bidens (Schedl, 1970) comb. nov. and Costaroplatus darlingtoni (Reichardt, 1965) comb. nov. are transferred from Megaplatypus Wood, 1993. Costaroplatus vonfaberi (Reichardt, 1962) comb. nov. is transferred from Platyphysus Wood, 1993. Epiplatypus striatus (Chapuis, 1865) comb. nov., Megaplatypus contextus (Schedl, 1963) comb. nov., Megaplatypus decorus (Schedl, 1936) comb. nov. and Megaplatypus dignatus (Schedl, 1936) comb. nov. are removed from Euplatypus Wood, 1993. Epiplatypus ornatus (Schedl, 1936) comb. nov. is transferred from Teloplatypus Wood, 1993. Euplatypus jamaicensis Bright, 1972 comb. nov., Megaplatypus discolor (Blandford, 1896) comb. nov., Teloplatypus brasiliensis (Nunberg, 1959) comb. nov., Teloplatypus nudus (Schedl, 1936) comb. nov. and Teloplatypus pernudus (Schedl, 1936) comb. nov. are transferred from Epiplatypus Wood, 1993. Costaroplatus ornatus (Schedl, 1936) comb. nov., is transferred from Cenocephalus Chapuis, 1865. Megaplatypus acutidens (Blandford, 1895) comb. nov. and Megaplatypus despectus (Schedl, 1971) comb. nov. are transferred from Tesserocerus Saunders, 1837. New synonymies are proposed as follows: Cenocephalus rugicollis Schedl, 1952 (= Cenocephalus epistomalis Wood, 1966 syn. nov.); Tesserocerus forcipatus Schedl, 1972 (= Platypus aplanatus Schedl, 1976 syn. nov.); Tesserocerus retusus Gurin-Mneville, 1838 (= Tesserocerus guerini ssp. montanus Schedl, 1960 syn. nov.); Tesserocerus simulatus Schedl, 1936 (= Platypus bilobus Schedl, 1961 syn. nov.); Tesserocerus spinax Blandford, 1896 (= Tesserocephalus forficula Schedl, 1936 syn. nov.); Costaroplatus carinulatus (Chapuis, 1865) (= Platypus umbrosus Schedl, 1936 syn. nov.); Costaroplatus shenefelti Nunberg (1963) (= Platypus abditulus Wood, 1966 syn. nov.); Costaroplatus vonfaberi (Reichardt, 1962) (= Platypus convexus Schedl, 1972 syn. nov.); Epiplatypus sallei (Chapuis, 1865) (= Platypus quadricaudatulus Schedl, 1934 syn. nov. and = Platypus filaris Wood, 1971 syn. nov.); Euplatypus longulus (Chapuis, 1865) (= Platypus dimidiatus Chapuis, 1865 syn. nov. = Platypus mulsanti Chapuis, 1865 syn. nov. and = Platypus pseudolongulus Schedl, 1963 syn. nov. ); Megaplatypus acutidens (Blandford, 1895) (= Tesserocerus alternantes Schedl, 1977 syn. nov.); Megaplatypus durus (Schedl, 1936) (= Platypus arcuatus Schedl, 1976 syn. nov.); Megaplatypus fuscus (Chapuis, 1865) (= Platypus marginatus Chapuis, 1865 syn. nov., = Platypus granarius Schedl, 1952 syn. nov., and = Platypus obsitus Schedl, 1976 syn. nov.); Megaplatypus irrepertus (Schedl, 1936) (= Platypus sulcipennis Schedl, 1976 syn. nov.); Neotrachyostus abbreviatus (Chapuis, 1865) (= Platypus concavus Chapuis, 1865 syn. nov.); Teloplatypus enixus (Schedl, 1936) (= Platypus interponens Schedl, 1978 syn. nov.); Teloplatypus ratzeburgi (Chapuis, 1865) (= Platypus pallidipennis Blandford, 1896 syn. nov.). Platypus simpliciformis Wood, 1966 had been transferred by Wood (1993) to both Megaplatypus and Euplatypus by mistake; I propose keeping it in Megaplatypus. Six Neotropical species are left in the genus Platypus with the status incertae sedis: Platypus armatus Chapuis, 1865; Platypus dorsalis Schedl, 1972; Playpus quadrilobus Blandford, 1895; Platypus squamifer Schedl, 1963; Platypus subaequalispinosus Schedl, 1936; and Platypus trispinosus Chapuis, 1965. These taxonomic changes prepare the foundations for future revisionary work on the American Platypodinae.


Asunto(s)
Escarabajos , Ornitorrinco , Gorgojos , Animales , Ambrosia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA