Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(8): 110057, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818542

RESUMEN

The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn's disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids.


Asunto(s)
Microbioma Gastrointestinal/genética , Regulación de la Expresión Génica/genética , Hominidae/microbiología , Animales , Bacterias/genética , Células Epiteliales/metabolismo , Heces/microbiología , Expresión Génica/genética , Gorilla gorilla/microbiología , Hominidae/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Microbiota/genética , Pan troglodytes/microbiología , Filogenia , Pongo/microbiología , ARN Ribosómico 16S/genética , Especificidad de la Especie
2.
PLoS One ; 16(10): e0257994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34637441

RESUMEN

Data on the prevalence of antibiotic resistance in Enterobacteriaceae in African wildlife are still relatively limited. The aim of this study was to estimate the prevalence of phenotypic intrinsic and acquired antimicrobial resistance of enterobacteria from several species of terrestrial wild mammals in national parks of Gabon. Colony culture and isolation were done using MacConkey agar. Isolates were identified using the VITEK 2 and MALDI-TOF methods. Antibiotic susceptibility was analysed and interpreted according to the European Committee on Antimicrobial Susceptibility Testing guidelines. The preliminary test for ESBL-producing Enterobacteriaceae was performed by replicating enterobacterial colonies on MacConkey agar supplemented with 2 mg/L cefotaxime (MCA+CTX). Extended-spectrum beta-lactamase (ESBL) production was confirmed with the double-disc synergy test (DDST). The inhibition zone diameters were read with SirScan. Among the 130 bacterial colonies isolated from 125 fecal samples, 90 enterobacterial isolates were identified. Escherichia coli (61%) was the most prevalent, followed by Enterobacter cloacae (8%), Proteus mirabilis (8%), Klebsiella variicola (7%), Klebsiella aerogenes (7%), Klebsiella oxytoca (4%), Citrobacter freundii (3%), Klebsiella pneumoniae (1%) and Serratia marcescens (1%). Acquired resistance was carried by E. coli (11% of all E. coli isolates) and E. cloacae (3% of all E. cloacae) isolates, while intrinsic resistance was detected in all the other resistant isolates (n = 31); K. variicola, K. oxytoca, K. pneumoniae, E. cloacae, K. aerogenes, S. marcescens and P. mirabilis). Our data show that most strains isolated in protected areas in Gabon are wild type isolates and carry intrinsic resistance rather than acquired resistance.


Asunto(s)
Animales Salvajes/microbiología , Antibacterianos/farmacología , Enterobacter cloacae/efectos de los fármacos , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/veterinaria , Escherichia coli/efectos de los fármacos , Parques Recreativos , Fenotipo , Resistencia betalactámica/genética , beta-Lactamas/farmacología , Animales , Enterobacter cloacae/enzimología , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Heces/microbiología , Gabón/epidemiología , Gorilla gorilla/microbiología , Mandrillus/microbiología , Pruebas de Sensibilidad Microbiana , Prevalencia , beta-Lactamasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972424

RESUMEN

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Asunto(s)
Evolución Biológica , Ecología/métodos , Hominidae/microbiología , Metagenoma/genética , Microbiota/genética , Boca/microbiología , África , Animales , Bacterias/clasificación , Bacterias/genética , Biopelículas , Placa Dental/microbiología , Geografía , Gorilla gorilla/microbiología , Hominidae/clasificación , Humanos , Pan troglodytes/microbiología , Filogenia
4.
Sci Rep ; 10(1): 19107, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154444

RESUMEN

Comparisons of mammalian gut microbiota across different environmental conditions shed light on the diversity and composition of gut bacteriome and suggest consequences for human and animal health. Gut bacteriome comparisons across different environments diverge in their results, showing no generalizable patterns linking habitat and dietary degradation with bacterial diversity. The challenge in drawing general conclusions from such studies lies in the broad terms describing diverse habitats ("wild", "captive", "pristine"). We conducted 16S ribosomal RNA gene sequencing to characterize intestinal microbiota of free-ranging sympatric chimpanzees and gorillas in southeastern Cameroon and sympatric chimpanzees and gorillas in a European zoo. We conducted participant-observation and semi-structured interviews among people living near these great apes to understand better their feeding habits and habitats. Unexpectedly, bacterial diversity (ASV, Faith PD and Shannon) was higher among zoo gorillas than among those in the Cameroonian forest, but zoo and Cameroonian chimpanzees showed no difference. Phylogeny was a strong driver of species-specific microbial composition. Surprisingly, zoo gorilla microbiota more closely resembled that of zoo chimpanzees than of Cameroonian gorillas. Zoo living conditions and dietary similarities may explain these results. We encourage multidisciplinary approach integrating environmental sampling and anthropological evaluation to characterize better diverse environmental conditions of such investigations.


Asunto(s)
Animales Salvajes/microbiología , Animales de Zoológico/microbiología , Dieta , Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Pan troglodytes/microbiología , Animales , Camerún , Heces/microbiología , Bosques , ARN Ribosómico 16S/genética , Especificidad de la Especie
5.
ISME J ; 14(6): 1584-1599, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203121

RESUMEN

The gut microbiome can vary across differences in host lifestyle, geography, and host species. By comparing closely related host species across varying lifestyles and geography, we can evaluate the relative contributions of these factors in structuring the composition and functions of the microbiome. Here we show that the gut microbial taxa, microbial gene family composition, and resistomes of great apes and humans are more related by host lifestyle than geography. We show that captive chimpanzees and gorillas are enriched for microbial genera commonly found in non-Westernized humans. Captive ape microbiomes also had up to ~34-fold higher abundance and up to ~5-fold higher richness of all antibiotic resistance genes compared with wild apes. Through functional metagenomics, we identified a number of novel antibiotic resistance genes, including a gene conferring resistance to colistin, an antibiotic of last resort. Finally, by comparing our study cohorts to human and ape gut microbiomes from a diverse range of environments and lifestyles, we find that the influence of host lifestyle is robust to various geographic locations.


Asunto(s)
Gorilla gorilla/microbiología , Microbiota , Pan troglodytes/microbiología , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Geografía , Humanos , Estilo de Vida , Metagenómica
6.
Sci Rep ; 9(1): 14243, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578447

RESUMEN

In our most recent study, we found that in Tanzania infection with Treponema pallidum (TP) subsp. pertenue (TPE) is present in four different monkey species. In order to gain information on the diversity and epidemiological spread of the infection in Tanzanian nonhuman primates (NHP), we identified two suitable candidate genes for multi-locus sequence typing (MLST). We demonstrate the functionality of the MLST system in invasively and non-invasively collected samples. While we were not able to demonstrate frequent interspecies transmission of TPE in Tanzanian monkeys, our results show a clustering of TPE strains according to geography and not host species, which is suggestive for rare transmission events between different NHP species. In addition to the geographic stability, we describe the relative temporal stability of the strains infecting NHPs and identified multi-strain infection. Differences between TPE strains of NHP and human origin are highlighted. Our results show that antibiotic resistance does not occur in Tanzanian TPE strains of NHP origin.


Asunto(s)
Cercopithecus/microbiología , Chlorocebus aethiops/microbiología , Especificidad del Huésped , Enfermedades de los Monos/transmisión , Papio anubis/microbiología , Papio cynocephalus/microbiología , Treponema/clasificación , Infecciones por Treponema/veterinaria , Animales , Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/microbiología , Enfermedades del Simio Antropoideo/transmisión , Congo/epidemiología , Heces/microbiología , Estudios de Asociación Genética , Variación Genética , Gorilla gorilla/microbiología , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Tanzanía/epidemiología , Treponema/genética , Treponema/aislamiento & purificación , Infecciones por Treponema/epidemiología , Infecciones por Treponema/microbiología , Infecciones por Treponema/transmisión
7.
Am J Phys Anthropol ; 169(3): 575-585, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025322

RESUMEN

OBJECTIVES: Environmental and ecological factors, such as geographic range, anthropogenic pressure, group identity, and feeding behavior are known to influence the gastrointestinal microbiomes of great apes. However, the influence of individual host traits such as age and sex, given specific dietary and social constraints, has been less studied. The objective of this investigation was to determine the associations between an individual's age and sex on the diversity and composition of the gut microbiome in wild western lowland gorillas. MATERIALS AND METHODS: Publicly available 16S rRNA data generated from fecal samples of different groups of Gorilla gorilla gorilla in the Central African Republic were downloaded and bioinformatically processed. The groups analyzed included habituated, partially habituated and unhabituated gorillas, sampled during low fruit (dry, n = 28) and high fruit (wet, n = 82) seasons. Microbial community analyses (alpha and beta diversity and analyses of discriminant taxa), in tandem with network-wide approaches, were used to (a) mine for specific age and sex based differences in gut bacterial community composition and to (b) asses for gut community modularity and bacterial taxa with potential functional roles, in the context of seasonal food variation, and social group affiliation. RESULTS: Both age and sex significantly influenced gut microbiome diversity and composition in wild western lowland gorillas. However, the largest differences were observed between infants and adults in habituated groups and between adults and immature gorillas within all groups, and across dry and wet seasons. Specifically, although adults always showed greater bacterial richness than infants and immature gorillas, network-wide analyses showed higher microbial community complexity and modularity in the infant gorilla gut. Sex-based microbiome differences were not evident among adults, being only detected among immature gorillas. CONCLUSIONS: The results presented point to a dynamic gut microbiome in Gorilla spp., associated with ontogeny and individual development. Of note, the gut microbiomes of breastfeeding infants seemed to reflect early exposure to complex, herbaceous vegetation. Whether increased compositional complexity of the infant gorilla gut microbiome is an adaptive response to an energy-limited diet and an underdeveloped gut needs to be further tested. Overall, age and sex based gut microbiome differences, as shown here, maybe mainly attributed to access to specific feeding sources, and social interactions between individuals within groups.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Gorilla gorilla/fisiología , Envejecimiento/fisiología , Animales , Antropología Física , ADN Bacteriano/análisis , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Masculino , ARN Ribosómico 16S/genética , Factores Sexuales
8.
Nat Commun ; 9(1): 1786, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725011

RESUMEN

The microbiome is essential for extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. Here we use 16S rRNA sequencing to characterize the microbiota of wild western lowland gorillas and sympatric central chimpanzees and demonstrate compositional divergence between the microbiotas of gorillas, chimpanzees, Old World monkeys, and modern humans. We show that gorilla and chimpanzee microbiomes fluctuate with seasonal rainfall patterns and frugivory. Metagenomic sequencing of gorilla microbiomes demonstrates distinctions in functional metabolic pathways, archaea, and dietary plants among enterotypes, suggesting that dietary seasonality dictates shifts in the microbiome and its capacity for microbial plant fiber digestion versus growth on mucus glycans. These data indicate that great ape microbiomes are malleable in response to dietary shifts, suggesting a role for microbiome plasticity in driving dietary flexibility, which may provide fundamental insights into the mechanisms by which diet has driven the evolution of human gut microbiomes.


Asunto(s)
Cercopithecidae/microbiología , Dieta/veterinaria , Microbioma Gastrointestinal , Gorilla gorilla/microbiología , Pan troglodytes/microbiología , Estaciones del Año , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Heces/microbiología , Femenino , Herbivoria , Humanos , Masculino , Redes y Vías Metabólicas , ARN Ribosómico 16S/genética , Especificidad de la Especie
9.
Microbiology (Reading) ; 164(1): 40-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205130

RESUMEN

Exposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels. Specifically, members of the family Anaerolineaceae (ρ=0.4, FDR q=0.01), genus Clostridium cluster XIVb (ρ=0.35, FDR q=0.02) and genus Oscillibacter (ρ=0.35, FDR q=0.02) were positively correlated with FGCM levels. Thus, while exposure to stressors appears to be associated with minor changes in the gorilla GIM, the consequences of these changes are unknown. Our results may have implications for conservation biology as well as for our overall understanding of factors influencing the non-human primate GIM.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Estrés Fisiológico , Animales , Bacterias/genética , ADN Bacteriano , Heces/química , Heces/microbiología , Glucocorticoides/análisis , Gorilla gorilla/fisiología , Modelos Estadísticos , ARN Ribosómico 16S , Análisis de Secuencia de ADN
10.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859316

RESUMEN

Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species.


Asunto(s)
Animales de Zoológico/microbiología , Enfermedades del Simio Antropoideo/microbiología , Bacterias/genética , Microbioma Gastrointestinal , Gorilla gorilla/microbiología , Cardiopatías/veterinaria , Animales , Animales de Zoológico/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Dieta , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/genética , Cardiopatías/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , ARN Ribosómico 16S
11.
Microb Ecol ; 72(4): 943-954, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26984253

RESUMEN

The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.


Asunto(s)
Antibacterianos/farmacología , Enfermedades del Simio Antropoideo/tratamiento farmacológico , Cefalosporinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Gorilla gorilla/microbiología , Animales , Bacteroidetes/crecimiento & desarrollo , República Centroafricana , Heces/microbiología , Firmicutes/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Ruminococcus/crecimiento & desarrollo
12.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26763711

RESUMEN

Skin microbes play a role in human body odour, health and disease. Compared with gut microbes, we know little about the changes in the composition of skin microbes in response to evolutionary changes in hosts, or more recent behavioural and cultural changes in humans. No studies have used sequence-based approaches to consider the skin microbe communities of gorillas and chimpanzees, for example. Comparison of the microbial associates of non-human primates with those of humans offers unique insights into both the ancient and modern features of our skin-associated microbes. Here we describe the microbes found on the skin of humans, chimpanzees, gorillas, rhesus macaques and baboons. We focus on the bacterial and archaeal residents in the axilla using high-throughput sequencing of the 16S rRNA gene. We find that human skin microbial communities are unique relative to those of other primates, in terms of both their diversity and their composition. These differences appear to reflect both ancient shifts during millions of years of primate evolution and more recent changes due to modern hygiene.


Asunto(s)
Microbiota , Primates/microbiología , Piel/microbiología , Animales , Biodiversidad , Evolución Biológica , Gorilla gorilla/microbiología , Humanos , Macaca mulatta/microbiología , Pan troglodytes/microbiología , Papio/microbiología , ARN de Archaea/química , ARN Bacteriano/química , ARN Ribosómico/química
13.
ISME J ; 10(2): 514-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26315972

RESUMEN

Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet-microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet-microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Gorilla gorilla/microbiología , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Evolución Biológica , Fibras de la Dieta/metabolismo , Heces/microbiología , Femenino , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Gorilla gorilla/metabolismo , Masculino , Especificidad de la Especie
14.
Microb Ecol ; 71(4): 990-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26714966

RESUMEN

Strain G4(T) was isolated from the stool sample of a wild gorilla (Gorilla gorilla gorilla) from Cameroon. It is a facultative anaerobic, Gram-negative, rod-shaped bacterium. This strain exhibits a 16S rRNA nucleotide sequence similarity of 97.48% with Paenibacillus typhae, the phylogenetically closest species with standing nomenclature. Moreover, the strain G4(T) presents some phenotypic differences when compared to other Paenibacillus species and shows a low MALDI-TOF Mass Spectrometry score that does not allow any identification. Thus, it is likely that this strain represents a new species. Here, we describe the characteristics of this organism, complete genome sequence, and annotation. The 6,933,847 bp size genome (1 chromosome but no plasmid) contains 5972 protein-coding genes and 54 RNAs genes, including 44 tRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G4(T) against the closest Paenibacillus genomes range between 19.7 and 22.1, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of Paenibacillus camerounensis sp. nov. that contains the strain G4(T).


Asunto(s)
Paenibacillus/genética , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Camerún , Mapeo Cromosómico , ADN Bacteriano/genética , ADN Ribosómico/genética , Genes de ARNr , Gorilla gorilla/microbiología , Paenibacillus/química , Paenibacillus/aislamiento & purificación , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , ARN de Transferencia/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
15.
Mol Ecol ; 24(10): 2551-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25846719

RESUMEN

The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.


Asunto(s)
Heces/microbiología , Gorilla gorilla/microbiología , Microbiota , Animales , República Centroafricana , ADN Bacteriano/genética , Dieta/veterinaria , Ácidos Grasos/análisis , Heces/química , Conducta Alimentaria , Geografía , Metabolómica
16.
J Vet Med Sci ; 77(5): 619-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25649412

RESUMEN

Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP.


Asunto(s)
Achromobacter denitrificans/efectos de los fármacos , Animales Salvajes , Farmacorresistencia Bacteriana Múltiple , Heces/microbiología , Gorilla gorilla/microbiología , Providencia/efectos de los fármacos , Achromobacter denitrificans/aislamiento & purificación , Animales , Gabón/epidemiología , Providencia/aislamiento & purificación
17.
Benef Microbes ; 6(3): 271-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25519524

RESUMEN

The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with human gut samples. Our results indicated applicability of the HITChip platform can be extended to chimpanzee and gorilla faecal samples for analysis of microbiota composition and enterotypes, but not to the evolutionary more distant marmosets.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Gorilla gorilla/microbiología , Intestinos/microbiología , Pan troglodytes/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Heces/microbiología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN Ribosómico 16S/genética
18.
Mol Ecol ; 24(3): 690-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25545295

RESUMEN

Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.


Asunto(s)
Bacterias/clasificación , Gorilla gorilla/microbiología , Intestinos/microbiología , Microbiota , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Animales , Heces/microbiología , Gorilla gorilla/virología , Virus de la Inmunodeficiencia de los Simios
19.
Sci Rep ; 4: 7174, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25417711

RESUMEN

Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.


Asunto(s)
Bacterias/aislamiento & purificación , Reservorios de Enfermedades , Gorilla gorilla/microbiología , Intestinos/microbiología , Animales , Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/microbiología , Bacterias/genética , Bacterias/patogenicidad , ADN Bacteriano/análisis , ADN Bacteriano/química , Heces/microbiología , Humanos , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ADN
20.
Integr Zool ; 9(5): 557-69, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25236539

RESUMEN

Microbial populations in the gastrointestinal tract contribute to host health and nutrition. Although gut microbial ecology is well studied in livestock and domestic animals, little is known of the endogenous populations inhabiting primates or carnivora. We characterized microbial populations in fecal cultures from gorillas (Gorilla gorilla gorilla), common chimpanzees (Pan troglodytes), Hamadryas baboons (Papio hamadryas) and binturongs (Arctictis binturong) to compare the microbiomes associated with different gastrointestinal morphologies and different omnivorous feeding strategies. Each species was fed a distinct standardized diet for 2 weeks prior to fecal collection. All diets were formulated to reflect the species' feeding strategies in situ. Fresh fecal samples were pooled within species and used to inoculate in vitro batch cultures. Acetate, propionate, butyrate and valerate were measured after 24 h of incubation. Eubacterial DNA was extracted from individual fecal samples, pooled, and the cpn60 gene region was amplified and then sequenced to identify the major eubacterial constituents associated with each host species. Short chain fatty acids (P < 0.001) and methane (P < 0.001) were significantly different across species. Eubacterial profiles were consistent with fermentation data and suggest an increase in diversity with dietary fiber.


Asunto(s)
Bacterias/clasificación , Heces/microbiología , Gorilla gorilla/microbiología , Pan troglodytes/microbiología , Papio hamadryas/microbiología , Viverridae/microbiología , Animales , Bacterias/aislamiento & purificación , Fibras de la Dieta , Fermentación , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...