Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.412
Filtrar
1.
Front Immunol ; 15: 1358036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690262

RESUMEN

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Replicación Viral , Animales , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Gránulos de Estrés/metabolismo , Bovinos , Factor 2 Eucariótico de Iniciación/metabolismo , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/metabolismo , Interacciones Huésped-Patógeno/inmunología , Fosforilación , Línea Celular , Gránulos Citoplasmáticos/metabolismo
2.
Sci Adv ; 10(18): eadg8771, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691600

RESUMEN

To facilitate the interrogation of protein function at scale, we have developed high-throughput insertion of tags across the genome (HITAG). HITAG enables users to rapidly produce libraries of cells, each with a different protein of interest C-terminally tagged. HITAG is based on a modified strategy for performing Cas9-based targeted insertions, coupled with an improved approach for selecting properly tagged lines. Analysis of the resulting clones generated by HITAG reveals high tagging specificity, with most successful tagging events being indel free. Using HITAG, we fuse mCherry to a set of 167 stress granule-associated proteins and elucidate the features that drive a subset of proteins to strongly accumulate within these transient RNA-protein granules.


Asunto(s)
Sitios Genéticos , Humanos , Sistemas CRISPR-Cas , Proteínas/genética , Proteínas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/genética
3.
FEBS Lett ; 598(7): 774-786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499396

RESUMEN

Membraneless organelles are RNA-protein assemblies which have been implicated in post-transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain-containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that in Drosophila, different germ granule proteins associate with the multi-domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudor in vitro and, surprisingly, partition to distinct and poorly overlapping clusters in germ granules in vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Gránulos Citoplasmáticos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gránulos de Ribonucleoproteína de Células Germinales , Células Germinativas/metabolismo
4.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421874

RESUMEN

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Asunto(s)
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulina/metabolismo , Proteómica , Lipidómica , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Exocitosis , Vesículas Secretoras/metabolismo , Gránulos Citoplasmáticos/metabolismo
5.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374028

RESUMEN

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Asunto(s)
Gránulos Citoplasmáticos , Esclerosis Múltiple , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Oligodendroglía , Citocinas/metabolismo , Estrés Fisiológico , Esclerosis Múltiple/metabolismo
6.
Nucleic Acids Res ; 52(6): 3310-3326, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38165001

RESUMEN

L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.


Asunto(s)
Células Madre Embrionarias , Proteínas de Unión al ARN , Ribonucleoproteínas , Animales , Humanos , Ratones , Gránulos Citoplasmáticos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HeLa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Biochem Biophys Res Commun ; 697: 149497, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38262290

RESUMEN

Stress granule (SG) is a temporary cellular structure that plays a crucial role in the regulation of mRNA and protein sequestration during various cellular stress conditions. SG enables cells to cope with stress more effectively, conserving vital energy and resources. Focusing on the NTF2-like domain of G3BP1, a key protein in SG dynamics, we explore to identify and characterize novel small molecules involved in SG modulation without external stressors. Through in silico molecular docking approach to simulate the interaction between various compounds and the NTF2-like domain of G3BP1, we identified three compounds as potential candidates that could bind to the NTF2-like domain of G3BP1. Subsequent immunofluorescence experiments demonstrated that these compounds induce the formation of SG-like, G3BP1-positive granules. Importantly, the granule formation by these compounds occurs independent from the phosphorylation of eIF2α, a common mechanism in SG formation, suggesting that it might offer a new strategy for influencing SG dynamics implicated in various diseases.


Asunto(s)
ADN Helicasas , ARN Helicasas , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Simulación del Acoplamiento Molecular , Gránulos Citoplasmáticos/metabolismo
8.
Geriatr Gerontol Int ; 24 Suppl 1: 7-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37726158

RESUMEN

Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.


Asunto(s)
Enfermedad de Alzheimer , ARN , Humanos , ARN/genética , ARN/metabolismo , Enfermedad de Alzheimer/patología , Gránulos de Estrés , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Chem Commun (Camb) ; 60(6): 762-765, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38126399

RESUMEN

The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.


Asunto(s)
ADN Helicasas , ARN Helicasas , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Separación de Fases , Gránulos Citoplasmáticos/metabolismo
10.
J Phys Chem B ; 127(49): 10498-10507, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38051203

RESUMEN

The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to ß-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.


Asunto(s)
Proteínas Portadoras , Proteínas Intrínsecamente Desordenadas , Proteínas Portadoras/metabolismo , Cateninas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Gránulos Citoplasmáticos/metabolismo
11.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38009921

RESUMEN

RNA silencing pathways are complex, highly conserved, and perform crucial regulatory roles. In Caenorhabditis elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments - P granules, Z granules, SIMR foci, and Mutator foci - multiple of which form via phase separation. Although the functions of individual germ granule proteins have been extensively studied, the relationships between germ granule compartments (collectively, 'nuage') are less understood. We find that key germ granule proteins assemble into separate but adjacent condensates, and that boundaries between germ granule compartments re-establish after perturbation. We discover a toroidal P granule morphology, which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization, providing broad implications for the trajectory of an RNA as it exits the nucleus. Moreover, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that assemble in a hierarchical manner and differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Our work creates a more accurate model of C. elegans nuage and informs the conceptualization of RNA silencing through the germ granule compartments.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Gránulos de Ribonucleoproteína de Células Germinales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , ARN/metabolismo , Gránulos Citoplasmáticos/metabolismo
12.
Cell Rep ; 42(11): 113358, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917584

RESUMEN

Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45ß) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45ß deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45ß knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45ß interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45ß markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45ß complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45ß as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.


Asunto(s)
Interferón Tipo I , Infecciones por Virus ARN , Animales , Ratones , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Gránulos de Estrés
13.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189006, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37913942

RESUMEN

Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.


Asunto(s)
Gránulos Citoplasmáticos , Estrés Fisiológico , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Estrés Oxidativo , Carcinogénesis/metabolismo , Microambiente Tumoral
14.
Nat Commun ; 14(1): 7782, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012130

RESUMEN

Stress granules (SGs) are dynamic, membrane-less organelles. With their formation and disassembly processes characterized, it remains elusive how compositional transitions are coordinated during prolonged stress to meet changing functional needs. Here, using time-resolved proteomic profiling of the acute to prolonged heat-shock SG life cycle, we identify dynamic SG proteins, further segregated into early and late proteins. Comparison of different groups of SG proteins suggests that their biochemical properties help coordinate SG compositional and functional transitions. In particular, early proteins, with high phase-separation-propensity, drive the rapid formation of the initial SG platform, while late proteins are subsequently recruited as discrete modules to further functionalize SGs. This model, supported by immunoblotting and immunofluorescence imaging, provides a conceptual framework for the compositional transitions throughout the acute to prolonged SG life cycle. Additionally, an early SG constituent, non-muscle myosin II, is shown to promote SG formation by increasing SG fusion, underscoring the strength of this dataset in revealing the complexity of SG regulation.


Asunto(s)
Gránulos Citoplasmáticos , Proteómica , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Estrés Fisiológico
15.
PLoS Biol ; 21(11): e3002381, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983241

RESUMEN

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SGs) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the mitochondrial antiviral signaling (MAVS) pathway and antiviral immunity during Sendai virus (SeV) and respiratory syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here, we show that SGs form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SGs form exclusively in cells that accumulate high levels of cbVGs. Protein kinase R (PKR) activation is increased during high cbVG infections and, as expected, is necessary for virus-induced SGs. However, SGs form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through 2 independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for global antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single-cell level, we show that infected cells that form SGs show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation, leading to a reduction in viral protein expression without altering overall antiviral immunity.


Asunto(s)
Interferones , Proteínas Virales , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Hibridación Fluorescente in Situ , Interferones/metabolismo , Biosíntesis de Proteínas , Genoma Viral , Gránulos Citoplasmáticos/metabolismo , Replicación Viral/genética
16.
Platelets ; 34(1): 2267147, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927048

RESUMEN

Platelets play many roles in the vasculature ensuring proper hemostasis and maintaining integrity. These roles are facilitated, in part, by cargo molecules released from platelet granules via Soluble NSF Attachment Protein Receptor (SNARE) mediated membrane fusion, which is controlled by several protein-protein interactions. Chaperones have been characterized for t-SNAREs (i.e. Munc18b for Syntaxin-11), but none have been clearly identified for v-SNAREs. α-Synuclein has been proposed as a v-SNARE chaperone which may affect SNARE-complex assembly, fusion pore opening, and thus secretion. Despite its abundance and that it is the only isoform present, α-synuclein's role in platelet secretion is uncharacterized. In this study, immunofluorescence showed that α-synuclein was present on punctate structures that co-stained with markers for α-granules and lysosomes and in a cytoplasmic pool. We analyzed the phenotype of α-synuclein-/- mice and their platelets. Platelets from knockout mice had a mild, agonist-dependent secretion defect but aggregation and spreading in vitro were unaffected. Consistently, thrombosis/hemostasis were unaffected in the tail-bleeding, FeCl3 carotid injury and jugular vein puncture models. None of the platelet secretory machinery examined, e.g. the v-SNAREs, were affected by α-synuclein's loss. The results indicate that, despite its abundance, α-synuclein has only a limited role in platelet function and thrombosis.


What did we know? The N-terminus of α-Synuclein affects SNARE-complex assembly, fusion pore opening, and granule docking.Microvascular bleeding is seen in Parkinson Disease patients where α-synuclein has a pathological role.What did we discover? α-Synuclein colocalizes with P-selectin (α-granules) and LAMP-1 (lysosomes) in platelets.The loss of α-synuclein has only a mild, agonist-dependent effect on platelet secretion.The loss of α-synuclein had no effect on thrombosis/hemostasis in 3 injury models.What is the impact? Despite its abundance, α-synuclein is not required for platelet secretion.α-Synuclein is not required for hemostasis or thrombosis.


Asunto(s)
Trombosis , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Exocitosis/fisiología , Ratones Noqueados , Activación Plaquetaria , Isoformas de Proteínas/metabolismo , Proteínas SNARE/metabolismo , Trombosis/metabolismo
17.
Nat Commun ; 14(1): 7390, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968266

RESUMEN

Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.


Asunto(s)
Gránulos Citoplasmáticos , ARN , Humanos , Animales , ARN/metabolismo , Células HEK293 , Gránulos Citoplasmáticos/metabolismo , Estrés Fisiológico/genética , Mamíferos/genética
18.
Cell ; 186(22): 4737-4756, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37890457

RESUMEN

Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.


Asunto(s)
Estructuras del Núcleo Celular , Gránulos Citoplasmáticos , Ribonucleoproteínas , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Gránulos de Ribonucleoproteínas Citoplasmáticas , Procesamiento Proteico-Postraduccional , Ribonucleoproteínas/metabolismo , ARN/metabolismo , Nucléolo Celular/metabolismo , Estructuras del Núcleo Celular/metabolismo , Estructuras del Núcleo Celular/patología , Animales
19.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1099-1118, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37401177

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.


Asunto(s)
Fenómenos Biológicos , Virosis , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , ARN/metabolismo , Virosis/metabolismo , Replicación Viral
20.
Plant Cell ; 35(9): 3325-3344, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401663

RESUMEN

Stress granules (SGs) are highly conserved cytoplasmic condensates that assemble in response to stress and contribute to maintaining protein homeostasis. These membraneless organelles are dynamic, disassembling once the stress is no longer present. Persistence of SGs due to mutations or chronic stress has been often related to age-dependent protein-misfolding diseases in animals. Here, we find that the metacaspase MC1 is dynamically recruited into SGs upon proteotoxic stress in Arabidopsis (Arabidopsis thaliana). Two predicted disordered regions, the prodomain and the 360 loop, mediate MC1 recruitment to and release from SGs. Importantly, we show that MC1 has the capacity to clear toxic protein aggregates in vivo and in vitro, acting as a disaggregase. Finally, we demonstrate that overexpressing MC1 delays senescence and this phenotype is dependent on the presence of the 360 loop and an intact catalytic domain. Together, our data indicate that MC1 regulates senescence through its recruitment into SGs and this function could potentially be linked to its remarkable protein aggregate-clearing activity.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Agregado de Proteínas , Gránulos de Estrés , Gránulos Citoplasmáticos/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA