Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 430, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387926

RESUMEN

Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.


Asunto(s)
ADN Helicasas , Miosina Tipo V , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Humanos , ADN Helicasas/metabolismo , ADN Helicasas/genética , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Gránulos de Estrés/metabolismo , Unión Proteica , Células HeLa , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Microtúbulos/metabolismo , Células HEK293 , Animales , Arsenitos/farmacología , Gránulos Citoplasmáticos/metabolismo
2.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39408899

RESUMEN

The chirality of a chemical differentiates it from its mirror-image counterpart. This unique property has significant implications in chemistry, biology, and drug discovery, where chiral chemicals display high selectivity and activity in achieving target specificity and reducing attrition rates in drug development. Stress granules (SGs) are dynamic assemblies of proteins and RNA that form in the cytoplasm of cells under stress conditions. Modulating their formation or disassembly could offer a novel approach to treating a wide range of diseases. This has led to significant interest in SGs as potential therapeutic targets. This study examined the NTF2-like domain of G3BP1 as a possible target for SG modulation. Molecular docking was used to simulate the interactions of compounds with the domain, and a potential candidate with a chiral structure was identified. The experiments showed that the compound induced the formation of SG-like granules. Importantly, the ability of this compound to modulate SG offers valuable insights into a new mechanism underlying the dynamics and promoting the assembly of SGs, and this new mechanism, in turn, holds potential for the development of drugs with diverse mechanisms of action and potentially synergistic effects.


Asunto(s)
ADN Helicasas , Factor 2 Eucariótico de Iniciación , Simulación del Acoplamiento Molecular , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/química , Gránulos de Estrés/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/química , Humanos , Fosforilación/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos
3.
Signal Transduct Target Ther ; 9(1): 258, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341825

RESUMEN

Epigenetic readers frequently affect gene regulation, correlate with disease prognosis, and hold significant potential as therapeutic targets for cancer. Zinc finger MYND-type containing 11 (ZMYND11) is notably recognized for reading the epigenetic marker H3.3K36me3; however, its broader functions and mechanisms of action in cancer remain underexplored. Here, we report that ZMYND11 downregulation is prevalent across various cancers and profoundly correlates with poorer outcomes in prostate cancer patients. Depletion of ZMYND11 promotes tumor cell growth, migration, and invasion in vitro, as well as tumor formation and metastasis in vivo. Mechanistically, we discover that ZMYND11 exhibits tumor suppressive roles by recognizing arginine-194-methylated HNRNPA1 dependent on its MYND domain, thereby retaining HNRNPA1 in the nucleus and preventing the formation of stress granules in the cytoplasm. Furthermore, ZMYND11 counteracts the HNRNPA1-driven increase in the PKM2/PKM1 ratio, thus mitigating the aggressive tumor phenotype promoted by PKM2. Remarkably, ZMYND11 recognition of HNRNPA1 can be disrupted by pharmaceutical inhibition of the arginine methyltransferase PRMT5. Tumors with low ZMYND11 expression show sensitivity to PRMT5 inhibitors. Taken together, our findings uncover a previously unexplored noncanonical role of ZMYND11 as a nonhistone methylation reader and underscore the critical importance of arginine methylation in the ZMYND11-HNRNPA1 interaction for restraining tumor progression, thereby proposing novel therapeutic targets and potential biomarkers for cancer treatment.


Asunto(s)
Epigénesis Genética , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Epigénesis Genética/genética , Masculino , Gránulos de Estrés/genética , Gránulos de Estrés/metabolismo , Línea Celular Tumoral , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinogénesis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Proteínas de Ciclo Celular , Proteínas Co-Represoras
4.
Nat Commun ; 15(1): 7696, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227617

RESUMEN

Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs). The sequestration of DBR1 by SIC enhances the accumulation of lariRNAs, branched circular RNAs derived from excised introns during pre-mRNA splicing, which in turn promote the transcription of their parental genes. Our findings further demonstrate that SIC-mediated DBR1 sequestration in SGs is crucial for plant HS tolerance, as deletion of the N-terminus of SIC (SIC1-244) impairs DBR1 sequestration and compromises plant response to HS. Overall, our study unveils a mechanism of transcriptional regulation in the HS response, where lariRNAs are enriched through DBR1 sequestration, ultimately promoting the transcription of heat stress tolerance genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Intrones , Empalme del ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Respuesta al Choque Térmico/genética , Intrones/genética , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , ARN de Planta/metabolismo , ARN de Planta/genética , Termotolerancia/genética , ARN Circular/metabolismo , ARN Circular/genética , Plantas Modificadas Genéticamente
5.
Int Immunopharmacol ; 142(Pt A): 113053, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260307

RESUMEN

Abnormally elevated tumor necrosis factor-α (TNFα) levels at the maternal-fetal interface can lead to adverse pregnancy outcomes, including recurrent miscarriage (RM), but the mechanism underlying upregulated TNFα expression is not fully understood. We previously reported that the interaction between monoclonal nonspecific suppressor factor-ß (MNSFß) and RC3H1 upregulates TNFα expression, but the precise mechanisms are unknown. In this study, we found that MNSFß stimulated the LPS-induced TNFα expression by inactivating the promoting effect of RC3H1 on TNFα mRNA degradation rather than directly inhibiting the expression of RC3H1 in THP1-Mϕs. Mechanistically, the 81-326 aa region of the RC3H1 protein binds to the 101-133 aa region of the MNSFß protein, and MNSFß facilitated stress granules (SGs) formation and the translocation of RC3H1 to SGs by interacting with RC3H1 and fragile X mental retardation 1 (FMR1) in response to LPS-induced stress. The SGs-localization of RC3H1 reduced its inhibitory effect on TNFα expression in LPS-treated THP1-Mϕs. The designed HEPN2 peptide effectively reduced the LPS-induced expression of TNFα in THP1-Mϕs by interfering with the MNSFß-RC3H1 interaction. Treatment with the HEPN2 peptide significantly improved adverse pregnancy outcomes, including early pregnancy loss (EPL) and lower fetal weight (LFW), which are induced by LPS in mice. These data indicated that MNSFß promoted TNFα expression at least partially by increasing the localization of RC3H1 to SGs under inflammatory stimulation and that the HEPN2 peptide improved the adverse pregnancy outcomes induced by LPS in mice, suggesting that MNSFß is a potential pharmacological target for adverse pregnancy outcomes caused by abnormally increased inflammation at early pregnancy.


Asunto(s)
Lipopolisacáridos , Macrófagos , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos , Femenino , Embarazo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Gránulos de Estrés/metabolismo , Aborto Habitual/metabolismo , Aborto Habitual/inmunología , Ratones Endogámicos C57BL , Péptidos/farmacología , Células THP-1
6.
Nature ; 633(8031): 941-951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39294374

RESUMEN

Subcellular protein localization regulates protein function and can be corrupted in cancers1 and neurodegenerative diseases2,3. The rewiring of localization to address disease-driving phenotypes would be an attractive targeted therapeutic approach. Molecules that harness the trafficking of a shuttle protein to control the subcellular localization of a target protein could enforce targeted protein relocalization and rewire the interactome. Here we identify a collection of shuttle proteins with potent ligands amenable to incorporation into targeted relocalization-activating molecules (TRAMs), and use these to relocalize endogenous proteins. Using a custom imaging analysis pipeline, we show that protein steady-state localization can be modulated through molecular coupling to shuttle proteins containing sufficiently strong localization sequences and expressed in the necessary abundance. We analyse the TRAM-induced relocalization of different proteins and then use nuclear hormone receptors as shuttles to redistribute disease-driving mutant proteins such as SMARCB1Q318X, TDP43ΔNLS and FUSR495X. TRAM-mediated relocalization of FUSR495X to the nucleus from the cytoplasm correlated with a reduction in the number of stress granules in a model of cellular stress. With methionyl aminopeptidase 2 and poly(ADP-ribose) polymerase 1 as endogenous cytoplasmic and nuclear shuttles, respectively, we demonstrate relocalization of endogenous PRMT9, SOS1 and FKBP12. Small-molecule-mediated redistribution of nicotinamide nucleotide adenylyltransferase 1 from nuclei to axons in primary neurons was able to slow axonal degeneration and pharmacologically mimic the genetic WldS gain-of-function phenotype in mice resistant to certain types of neurodegeneration4. The concept of targeted protein relocalization could therefore inspire approaches for treating disease through interactome rewiring.


Asunto(s)
Mapas de Interacción de Proteínas , Transporte de Proteínas , Animales , Humanos , Ratones , Axones/metabolismo , Axones/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Células HeLa , Ligandos , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Gránulos de Estrés/metabolismo , Estrés Fisiológico , Proteína 1A de Unión a Tacrolimus/metabolismo
7.
Int J Biol Macromol ; 279(Pt 2): 135274, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226976

RESUMEN

Stress granules (SGs) are cytoplasmic aggregates of proteins and mRNA that form in response to diverse environmental stressors, including viral infections. Several viruses possess the ability to block the formation of stress granules by targeting the SGs marker protein G3BP. However, the molecular functions and mechanisms underlying the regulation of SGs formation by Getah virus (GETV) remain unclear. In this study, we found that GETV infection triggered the formation of Nsp3-G3BP aggregates, which differed in composition from SGs. Further studies revealed that the presence of these aggregates was dependent on the activation of the PKR/eIF2α signaling pathway. Interestingly, we found that Nsp3 HVD domain blocked the formation of SGs by binding to G3BP NTF2 domain. Moreover, knockout of G3BP in NCI-H1299 cells had no effect on GETV replication, while overexpression of G3BP to form the genuine SGs significantly inhibited GETV replication. Overall, our study elucidates a novel role GETV Nsp3 to change the composition of SG as well as cellular stress response.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Proteínas no Estructurales Virales , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Humanos , Gránulos de Estrés/metabolismo , ARN Helicasas/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral , Transducción de Señal , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
8.
Proc Natl Acad Sci U S A ; 121(35): e2408554121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172789

RESUMEN

Biomolecules can be sequestered into membrane-less compartments, referred to as biomolecular condensates. Experimental and computational methods have helped define the physical-chemical properties of condensates. Less is known about how the high macromolecule concentrations in condensed phases contribute "solvent" interactions that can remodel the free-energy landscape of other condensate-resident proteins, altering thermally accessible conformations and, in turn, modulating function. Here, we use solution NMR spectroscopy to obtain atomic resolution insights into the interactions between the immature form of superoxide dismutase 1 (SOD1), which can mislocalize and aggregate in stress granules, and the RNA-binding protein CAPRIN1, a component of stress granules. NMR studies of CAPRIN1:SOD1 interactions, focused on both unfolded and folded SOD1 states in mixed phase and demixed CAPRIN1-based condensates, establish that CAPRIN1 shifts the SOD1 folding equilibrium toward the unfolded state through preferential interactions with the unfolded ensemble, with little change to the structure of the folded conformation. Key contacts between CAPRIN1 and the H80-H120 region of unfolded SOD1 are identified, as well as SOD1 interaction sites near both the arginine-rich and aromatic-rich regions of CAPRIN1. Unfolding of immature SOD1 in the CAPRIN1 condensed phase is shown to be coupled to aggregation, while a more stable zinc-bound, dimeric form of SOD1 is less susceptible to unfolding when solvated by CAPRIN1. Our work underscores the impact of the condensate solvent environment on the conformational states of resident proteins and supports the hypothesis that ALS mutations that decrease metal binding or dimerization function as drivers of aggregation in condensates.


Asunto(s)
Solventes , Superóxido Dismutasa-1 , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Humanos , Solventes/química , Desplegamiento Proteico , Unión Proteica , Pliegue de Proteína , Modelos Moleculares , Gránulos de Estrés/metabolismo , Gránulos de Estrés/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Conformación Proteica , Espectroscopía de Resonancia Magnética
9.
Int J Biol Macromol ; 277(Pt 3): 134411, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097054

RESUMEN

Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ARN , Gránulos de Estrés , Humanos , Metilación , Unión Proteica , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/metabolismo
10.
Mol Cell ; 84(17): 3320-3335.e7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173636

RESUMEN

Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.


Asunto(s)
Arabidopsis , Respuesta al Choque Térmico , Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteolisis , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Gránulos Citoplasmáticos/metabolismo
11.
Cell Rep ; 43(8): 114617, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39120973

RESUMEN

Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , Mapas de Interacción de Proteínas , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Humanos , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Gránulos de Estrés/metabolismo , Animales , ADN Helicasas/metabolismo , ADN Helicasas/genética , Filogenia , Células HeLa , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales
12.
Nucleic Acids Res ; 52(16): 9745-9759, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39106168

RESUMEN

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Neuronas , Gránulos de Estrés , Animales , Gránulos de Estrés/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Humanos , Neuronas/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Ratones , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Ataxia/genética , Ataxia/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Alphavirus/genética , Alphavirus/metabolismo , Ratas , Proteínas Portadoras/metabolismo , Drosophila/metabolismo , Gránulos Citoplasmáticos/metabolismo , Estrés Fisiológico , Proteínas de Unión al ADN
13.
Cancer Lett ; 601: 217160, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111384

RESUMEN

RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias , Proteínas de Unión al ARN , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Animales , Gránulos de Estrés/metabolismo , Estabilidad del ARN , Separación de Fases
14.
J Mol Biol ; 436(18): 168703, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004265

RESUMEN

Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid-liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.


Asunto(s)
Priones , Gránulos de Estrés , Priones/metabolismo , Priones/química , Gránulos de Estrés/metabolismo , Humanos , Dominios Proteicos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Interacciones Hidrofóbicas e Hidrofílicas , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química
15.
J Mol Biol ; 436(19): 168727, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079611

RESUMEN

Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.


Asunto(s)
Proteínas de Ciclo Celular , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , Proteína-Arginina N-Metiltransferasas , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas Represoras , Gránulos de Estrés , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Humanos , ADN Helicasas/metabolismo , ADN Helicasas/genética , Gránulos de Estrés/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Unión Proteica , Metilación , Gránulos Citoplasmáticos/metabolismo , Células HeLa
16.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000276

RESUMEN

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Hipocampo , Neuronas , SARS-CoV-2 , Sumoilación , Proteínas tau , Proteínas tau/metabolismo , Animales , Ratones , Humanos , Hipocampo/metabolismo , Hipocampo/patología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , SARS-CoV-2/patogenicidad , SARS-CoV-2/metabolismo , Fosforilación , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Gránulos de Estrés/metabolismo , Ratones Endogámicos C57BL , Fosfoproteínas/metabolismo , Masculino , Proteínas de la Nucleocápside/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/virología
17.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39007803

RESUMEN

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.


Asunto(s)
ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Humanos , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Cuerpos de Procesamiento/metabolismo , Cuerpos de Procesamiento/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Células HeLa , ADN Helicasas/metabolismo , ADN Helicasas/genética , Células HEK293 , Unión Proteica , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas Proto-Oncogénicas
18.
Viruses ; 16(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066190

RESUMEN

Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown. By confocal imaging on CHPV-infected Vero-E6 cells, we found that CHPV infection does not induce formation of distinct canonical SGs. Instead, CHPV proteins condense and co-localize together with SG proteins to form heterogeneous IBs, which ensued independent of the activation of eIF2α and eIF2α kinase, protein kinase R (PKR). Interestingly, siRNA-mediated depletion of PKR or TIA-1 significantly decreased viral transcription and virion production. Moreover, CHPV infection also caused condensation and recruitment of PKR to IBs. Compared to SGs, IBs exhibited significant rapidity in disassembly dynamics. Altogether, our study demonstrating that CHPV replication co-optimizes with SG proteins and revealing an unprecedented proviral role of TIA-1/PKR may have implications in understanding the mechanisms regulating CHPV-IB formation and designing antiviral therapeutics. Importance: CHPV is an emerging tropical pathogen reported to cause acute influenza-like illness and encephalitis in children with a very high mortality rate of ~70%. Lack of vaccines and an effective therapy against CHPV makes it a potent pathogen for causing an epidemic in tropical parts of globe. Given these forewarnings, it is of paramount importance that CHPV biology must be understood comprehensively. Targeting of host factors offers several advantages over targeting the viral components due to the generally higher mutation rate in the viral genome. In this study, we aimed at understanding the role of SGs forming cellular RNA-binding proteins in CHPV replication. Our study helps understand participation of cellular factors in CHPV replication and could help develop effective therapeutics against the virus.


Asunto(s)
Cuerpos de Inclusión Viral , Antígeno Intracelular 1 de las Células T , Replicación Viral , eIF-2 Quinasa , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Animales , Antígeno Intracelular 1 de las Células T/metabolismo , Antígeno Intracelular 1 de las Células T/genética , Chlorocebus aethiops , Células Vero , Cuerpos de Inclusión Viral/metabolismo , Humanos , Gránulos de Estrés/metabolismo , Cuerpos de Inclusión/metabolismo , Interacciones Huésped-Patógeno , Gránulos Citoplasmáticos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Separación de Fases
19.
Curr Probl Cardiol ; 49(10): 102760, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059785

RESUMEN

Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.


Asunto(s)
Aterosclerosis , Estrés Oxidativo , Gránulos de Estrés , Humanos , Aterosclerosis/terapia , Aterosclerosis/metabolismo , Aterosclerosis/etiología , Estrés Oxidativo/fisiología , Gránulos de Estrés/metabolismo , Animales , Inflamación
20.
Nucleic Acids Res ; 52(15): 8675-8686, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39069641

RESUMEN

Stress granules (SGs) are cytoplasmic messenger ribonucleoprotein granules transiently formed in stressed mammalian cells. Although SG components have been well characterized, detailed insights into the molecular behavior inside SGs remain unresolved. We investigated nanoscale dynamics and localization of endogenous mRNAs in SGs combining single mRNA tracking and super-resolution localization microscopy. First, we developed a methodology for tracking single mRNAs within SGs, revealing that although mRNAs in SGs are mainly stationary (∼40%), they also move in a confined (∼25%) or freely diffusing (∼35%) manner. Second, the super-resolution localization microscopy showed that the mRNAs in SGs are heterogeneously distributed and partially form high-density clusters. Third, we simultaneously performed single mRNA tracking and super-resolution microscopy in SGs, demonstrating that single mRNA trajectories are mainly found around high-density clusters. Finally, a quantitative analysis of mRNA localization and dynamics during stress removal was conducted using live super-resolution imaging and single-molecule tracking. These results suggest that SGs have a highly organized structure that enables dynamic regulation of the mRNAs at the nanoscale, which is responsible for the ordered formation and the wide variety of functions of SGs.


Asunto(s)
ARN Mensajero , Imagen Individual de Molécula , Gránulos de Estrés , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Imagen Individual de Molécula/métodos , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Células HeLa , Transporte de ARN , Gránulos Citoplasmáticos/metabolismo , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...