Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985767

RESUMEN

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Asunto(s)
Grafito , Hidrógeno , Shewanella , Hidrógeno/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafito/metabolismo , Hidrogenasas/metabolismo , Hidrogenasas/genética , Transporte de Electrón , Reactores Biológicos , Biología Sintética/métodos , Electrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fuentes de Energía Bioeléctrica/microbiología
2.
PLoS One ; 19(3): e0297892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451974

RESUMEN

Graphene has promising applications in agriculture and forestry. In the current study, six different concentrations of graphene (0mg/L, 0.01mg/L, 0.10mg/L, 1.00mg/L, 10.00mg/L, and 100.00mg/L) were used to investigate its effect on the growth and development of V. angularis plants in soil culture. The results showed that the group treated with 1.00mg/L graphene (G-1) had significantly increased plant height (19.86%), stem diameter (24.33%), and leaf area (13.69%), compared to the control group (CK). Moreover, all concentrations of graphene had positive effects on the total root length, total root surface area, and the number of root tips of V. angularis. Compared to the CK group, the G-1 group had significantly increased leaf water potential (37.89%), leaf conductivity (2.25%), and SOD, POD, and CAT activities (47.67%, 35.22%, and 199.3%, respectively). The G-1 group also showed improved leaf net photosynthetic rate, chlorophyll content, and soluble sugar content (51.28%, 24.25%, and 38.35%, respectively), compared to the CK group. Additionally, 1.00mg/L graphene led to a 23.88% increase in the podding rate and a 17.04% increase in the yield of V. angularis plants. The rhizosphere soil of V. angularis treated with 1.00mg/L graphene had a 25.14% increase in hydrolyzable nitrogen content and a 66.67% increase in available phosphorus content. RNA-seq data indicated that 1.00mg/L graphene induced the expression of photosynthesis and nitrogen transmembrane transport genes, including ATP synthase subunit b, photosystem I reaction center subunit XI, photosystem I reaction center subunit IV A, ferredoxin, and psbP-like protein 1, as well as genes for photosynthesis antenna proteins, glutamine synthetase, glutamate dehydrogenase 1, cyanate hydratase, protein fluG-like, and NRT1/PTR family, suggesting that graphene promoted the growth and development of V. angularis by enhancing the photosynthesis and nitrogen metabolism processes in V. angularis plants. Our results indicated that a suitable concentration of graphene could significantly promote the growth of V. angularis plants in soil.


Asunto(s)
Grafito , Vigna , Vigna/metabolismo , Grafito/farmacología , Grafito/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Nitrógeno/metabolismo , Suelo
3.
mSphere ; 9(1): e0071523, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38197645

RESUMEN

Graphene oxide (GO) and graphene-based materials (GBMs) have gained over the last two decades considerable attention due to their intrinsic physicochemical properties and their applications. Besides, a lot of concern regarding the potential toxicity of GBMs has emerged. One of the aspects of concern is the interactions between GBMs and different environmental compartments, especially indigenous microbial and, in particular, bacterial communities. Recent research showed that GO and GBMs impacted bacterial pure culture or bacterial communities; therefore, these interactions have to be further studied to better understand and assess the fate of these materials in the environment. Here, we present our opinion and hypotheses related to possible degradation mechanisms of GO that can be used by environmental bacteria. This work is the first attempt to deduce and summarize plausible degradation pathways of GO, from structurally similar recalcitrant and toxic compounds, such as polyaromatic hydrocarbons.


Asunto(s)
Grafito , Grafito/metabolismo , Bacterias/metabolismo
4.
Nanoscale ; 16(5): 2419-2431, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226500

RESUMEN

The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.


Asunto(s)
Grafito , Nociceptores , Ratas , Animales , Nociceptores/metabolismo , Irritantes/metabolismo , Irritantes/farmacología , Grafito/farmacología , Grafito/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Ganglios Espinales/metabolismo
5.
Ecotoxicol Environ Saf ; 270: 115893, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154154

RESUMEN

There is limited understanding of nanoparticle potential ecotoxicity, particularly regarding the influence of environmental factors that can be transferred through the food chain. Here, we assessed the transfer behavior and the ecotoxicity of commercially manufactured graphene oxide nano-materials (GO, <100 nm) in a food chain perspective spanning from Escherichia coli (E. coli) to Caenorhabditis elegans (C. elegans) under simulated environmental conditions. Our findings revealed that E. coli preyed upon GO, subsequently transferring it to C. elegans, with a discernible distribution of GO observed in the digestive system and reproductive system. Accumulated GO generated serious ecological consequences for the higher level of the food chain (C. elegans). More importantly, GO and the resulting injurious effects of germ cells could be transferred to the next generation, indicating that GO exposure could cause genetic damage across generations. Previous research has demonstrated that GO can induce degradation of both the inner and outer cell membranes of E. coli, which is then transmitted to C. elegans through the food chain. Additionally, fulvic acid (FA) possesses various functional groups that enable interaction with nanomaterials. Our findings indicated that these interactions could mitigate ecotoxicity caused by GO exposure via food delivery, and this approach could be extended to modify GO in a way that significantly reduced its toxic effects without compromising performance. These results highlighted how environmental factors could attenuate ecological risks associated with nanomaterial transmission through the food chain.


Asunto(s)
Benzopiranos , Grafito , Nanopartículas , Animales , Caenorhabditis elegans , Escherichia coli/genética , Escherichia coli/metabolismo , Nanopartículas/toxicidad , Grafito/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...