Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126117

RESUMEN

Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Animales , Vacunas contra la Influenza/inmunología , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/prevención & control , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Humana/prevención & control , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/virología , Aves/virología , Pandemias/prevención & control
3.
PLoS One ; 19(7): e0307100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012858

RESUMEN

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Asunto(s)
Pollos , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Animales , Pollos/virología , Pollos/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Gripe Aviar/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , América del Norte , Vacunación , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Meleágrido 1/genética
4.
Can J Vet Res ; 88(3): 94-98, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988336

RESUMEN

Cases of high pathogenicity avian influenza (HPAI) in Canada are upon us again and with reports of infection in US dairy cattle and a dairy farmer in the United States, concern has been raised. Although panic isn't helpful, this heightened level of concern is appropriate, given that reports of human infections with the H5N1 virus often indicate high mortality rates. These can range from 14 to 50%. The current devastating impact of the virus on the poultry industry, as well as its propensity to mutate are also reasons for concern. At the same time, HPAI provides an opportunity for the poultry and livestock industries to align and organize coherently for the management of all zoonotic diseases and other industry issues. To manage HPAI more effectively, it is essential to align all stakeholders under Outbreak Response Best Practices using a formal Quality Management System (QMS). The objective of this article is to describe this approach with examples drawn from management of the Walkerton waterborne disease crisis. We urge the veterinary profession to rise to the challenge of HPAI and use it as a context in which to align more coherently with national stakeholders for the prevention and management of all priority issues within the areas of Agri-food and Public Health.


Les cas de grippe aviaire hautement pathogène (HPAI) sont de nouveau aux portes du Canada et, avec les rapports d'infection chez des bovins laitiers américains et chez un producteur laitier aux États-Unis, des inquiétudes ont été soulevées. Même si la panique n'aide pas, ce niveau d'inquiétude accru est approprié, étant donné que les rapports d'infections humaines par le virus H5N1 indiquent souvent des taux de mortalité élevés. Ceux-ci peuvent aller de 14 à 50 %. L'impact dévastateur actuel du virus sur l'industrie avicole, ainsi que sa propension à muter sont également des motifs d'inquiétude. Dans un même temps, l'HPAI offre aux secteurs de la volaille et de l'élevage l'opportunité de s'associer et de s'organiser de manière cohérente pour la gestion de toutes les maladies zoonotiques et d'autres problèmes industriels. Pour gérer l'HPAI plus efficacement, il est essentiel d'aligner toutes les parties prenantes sur les meilleures pratiques de réponse aux épidémies en utilisant un système de gestion de la qualité (QMS) formel. L'objectif de cet article est de décrire cette approche avec des exemples tirés de la gestion de la crise des maladies d'origine hydrique à Walkerton. Nous exhortons la profession vétérinaire à relever le défi de l'HPAI et à l'utiliser comme un contexte dans lequel s'aligner de manière plus cohérente avec les parties prenantes nationales pour la prévention et la gestion de toutes les questions prioritaires dans les domaines de l'agroalimentaire et de la santé publique.(Traduit par Docteur Serge Messier).


Asunto(s)
Brotes de Enfermedades , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Brotes de Enfermedades/veterinaria , Brotes de Enfermedades/prevención & control , Canadá/epidemiología , Humanos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Aves
5.
ACS Infect Dis ; 10(8): 3026-3041, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38970488

RESUMEN

Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention. However, the selective application of cytokines is critical since unregulated expression of cytokines, particularly proinflammatory ones, can cause substantial tissue damage during acute phases of immune responses. Moreover, depending on the type of cytokine and its impact on intestinal microbiota, outcomes of cytokine-gut microflora interaction can have a critical effect on overall host defense against AIV infections. Our recent study demonstrated some prominent roles of chicken IL-17A (ChIL-17A) in regulating antiviral host responses against AIV infection, however, in an in vitro model. For more detailed insights into ChIL-17A function, in the present study, we investigated whether ChIL-17A-meditated elevated antiviral host responses can translate into effective immune protection against AIV infection in an in vivo system. Moreover, considering the role of gut health in fostering innate or local host responses, we further studied the contributory relationships between gut microbiota and host immunity against AIV infection in chickens. For this, we employed a recombinant lactic acid-producing bacterial (LAB) vector, Lactococcus lactis, expressing ChIL-17A and analyzed the in vivo functionality in chickens against an LPAIV (A/H9N2) infection. Our study delineates that mucosal delivery of rL. lactis expressing ChIL-17A triggers proinflammatory signaling cascades and can drive a positive shift in phylum Firmicutes, along with a marked decline in phylum Actinobacteriota and Proteobacteria, favoring effective antiviral host responses against AIV infection in chickens. We propose that ChIL-17A-mediated selective expansion of beneficial gut microbiota might form a healthy microbial community that augments the effective immune protection against AIV infections in chickens.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Gripe Aviar , Interleucina-17 , Animales , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Interleucina-17/genética , Interleucina-17/inmunología , Virus de la Influenza A/inmunología , Vectores Genéticos , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/microbiología
6.
Prev Vet Med ; 230: 106260, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976955

RESUMEN

Outbreaks of highly pathogenic avian influenza (HPAI) have resulted in severe economic impact for national governments and poultry industries globally and in Sweden in recent years. Veterinary authorities can enforce prevention measures, e.g. mandatory indoor housing of poultry, in HPAI high-risk areas. The aim of this study was to conduct a spatiotemporal mapping of the risk of introduction of highly pathogenic avian influenza virus (HPAIV) to Swedish poultry from wild birds, utilising existing data sources. A raster calculation method was used to assess the spatiotemporal risk of introduction of HPAIV to Swedish poultry. The environmental infectious pressure of HPAIV was first calculated in each 5 km by 5 km cell using four risk factors: density of selected species of wild birds, air temperature, presence of agriculture as land cover and presence of HPAI in wild birds based on data from October 2016-September 2021. The relative importance of each risk factor was weighted based on opinion of experts. The estimated environmental infectious pressure was then multiplied with poultry population density to obtain risk values for risk of introduction of HPAIV to poultry. The results showed a large variation in risk both on national and local level. The counties of Skåne and Östergötland particularly stood out regarding environmental infectious pressure, risk of introduction to poultry and detected outbreaks of HPAI. On the other hand, there were counties, identified as having higher risk of introduction to poultry which never experienced any outbreaks. A possible explanation is the variation in poultry production types present in different areas of Sweden. These results indicate that the national and local variation in risk for HPAIV introduction to poultry in Sweden is high, and this would support more targeted compulsory prevention measures than what has previously been employed in Sweden. With the current and evolving HPAI situation in Europe and on the global level, there is a need for continuous updates to the risk map as the virus evolves and circulates in different wild bird species. The study also identified areas of improvement, in relation to data use and data availability, e.g. improvements to poultry registers, inclusion of citizen reported mortality in wild birds, data from standardised wild bird surveys, wild bird migration data as well as results from ongoing risk-factor studies.


Asunto(s)
Gripe Aviar , Enfermedades de las Aves de Corral , Aves de Corral , Animales , Suecia/epidemiología , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Factores de Riesgo , Brotes de Enfermedades/veterinaria , Medición de Riesgo , Animales Salvajes , Aves , Análisis Espacio-Temporal
7.
Protein Expr Purif ; 223: 106541, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38971212

RESUMEN

Avian influenza poses a significant global health threat, with the potential for widespread pandemics and devastating consequences. Hemagglutinin (HA), a critical surface glycoprotein of influenza viruses, plays a pivotal role in viral entry and serves as a primary target for subunit vaccine development. In this study, we successfully cloned, expressed, and purified hemagglutinin from the circulating strain of H5N1 influenza virus using a robust molecular biology approach. The cloning process involved insertion of the synthetic HA gene into the pET21b vector, confirmed through double digestion and sequencing. SDS-PAGE analysis confirmed the presence of the expected 60 kDa protein band post-induction. Following expression, the protein was subjected to purification via Ni-NTA affinity chromatography, yielding pure protein fractions. Native PAGE analysis confirmed the protein's oligomeric forms, essential for optimal antigenicity. Western blot analysis further validated protein identity using anti-His and anti-HA antibodies. MALDI-TOF analysis confirmed the protein's sequence integrity, while hemagglutination assay demonstrated its biological activity in binding to N-acetyl neuraminic acid. These findings underscore the potential of recombinant hemagglutinin as a valuable antigen for diagnosis and biochemical assays as well as for vaccine development against avian influenza. In conclusion, this study represents a critical guide for bacterial production of H5N1 HA, which can be a cost-effective and simpler strategy compared to mammalian protein expression. Further research into optimizing vaccine candidates and production methods will be essential in combating the ongoing threat of avian influenza pandemics.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Hemaglutinación , Gripe Aviar/prevención & control , Gripe Aviar/virología , Gripe Aviar/inmunología , Gripe Aviar/genética , Clonación Molecular , Expresión Génica , Multimerización de Proteína , Humanos , Aves
9.
Sci Rep ; 14(1): 15924, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987345

RESUMEN

Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird's position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.


Asunto(s)
Animales Salvajes , Aprendizaje Profundo , Gripe Aviar , Rayos Láser , Animales , Gripe Aviar/prevención & control , Aves , Patos , Taiwán
11.
Viruses ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38932122

RESUMEN

In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.


Asunto(s)
Anticuerpos Antivirales , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Gripe Aviar , Pupa , Vacunas de Subunidad , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/administración & dosificación , Pupa/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Subtipo H7N1 del Virus de la Influenza A/inmunología , Subtipo H7N1 del Virus de la Influenza A/genética , Baculoviridae/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/genética , Humanos , Desarrollo de Vacunas , Mariposas Nocturnas/inmunología , Pandemias/prevención & control
12.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848854

RESUMEN

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Asunto(s)
Variación Antigénica , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Glicosilación , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Pollos/virología , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Aviar/prevención & control , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Epítopos/inmunología , Epítopos/química , Antígenos Virales/inmunología , Antígenos Virales/genética
13.
J Infect ; 89(2): 106199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901571

RESUMEN

The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.


Asunto(s)
Antígenos Virales , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Animales , Antígenos Virales/inmunología , China , Aves
14.
Int J Pharm ; 660: 124318, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852750

RESUMEN

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.


Asunto(s)
Adyuvantes Inmunológicos , Pollos , Inmunidad Mucosa , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Nanopartículas , Polisacáridos , Dióxido de Silicio , Animales , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Polisacáridos/administración & dosificación , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/inmunología , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/química , Nanopartículas/administración & dosificación , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Inmunidad Mucosa/efectos de los fármacos , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Oral , Mucosa Intestinal/inmunología , Mucosa Intestinal/efectos de los fármacos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología
15.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38832658

RESUMEN

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Asunto(s)
Leche , Pasteurización , Animales , Pasteurización/métodos , Leche/virología , Bovinos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Humanos , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/prevención & control , Gripe Aviar/epidemiología , Inactivación de Virus , Estados Unidos , Gripe Humana/virología , Gripe Humana/transmisión , Gripe Humana/prevención & control , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Femenino
16.
Rev Med Virol ; 34(4): e2559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886173

RESUMEN

The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.


Asunto(s)
Aves , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Humanos , Gripe Humana/prevención & control , Gripe Humana/epidemiología , Gripe Humana/virología , Región Mediterránea/epidemiología , Aves/virología , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria
20.
Vet Microbiol ; 294: 110108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729093

RESUMEN

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Asunto(s)
Anticuerpos Antivirales , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus , Animales , Pollos/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Glicosilación , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Gripe Aviar/virología , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Femenino , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Citocinas , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...