Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
1.
J Med Virol ; 96(6): e29736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864349

RESUMEN

Although a range of blood traits have been reported to be associated with influenza A(H1N1)pdm09 (H1N1pdm09) disease severity, their underlying causal relationships and biological mechanisms have remained unclear. This study aimed to investigate the causal relationship between blood traits and H1N1pdm09 using a two-sample Mendelian randomization analysis. Based on the data from our in-house genome-wide association study (GWAS) on H1N1pdm09 disease severity (Ncase [severe] = 70, Ncontrol [mild] = 95) and GWAS summaries of 44 blood traits from Biobank Japan (N = 12 303-143 658), we identified the potential causal effect of blood traits on severe H1N1pdm09. The inverse variance weighted method analysis revealed significant causal effects of lower aspartate aminotransferase (AST, ß = -3.212, p = 0.019), low-density-lipoprotein cholesterol (LDL-C, ß = -1.372, p = 0.045), and basophil counts (Baso, ß = -1.638, p = 0.047) on severe H1N1pdm09 disease. Additionally, polygenic risk score analysis further confirmed genetic overlap between these blood traits and severe H1N1pdm09 disease. This study provided evidence linking the lower level of AST, LDL-C, and lower count of Baso with severe H1N1pdm09 disease, potentially identifying new therapeutic targets for patients with severe influenza.


Asunto(s)
Estudio de Asociación del Genoma Completo , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Análisis de la Aleatorización Mendeliana , Humanos , Gripe Humana/virología , Gripe Humana/genética , Gripe Humana/epidemiología , Subtipo H1N1 del Virus de la Influenza A/genética , Japón/epidemiología , Predisposición Genética a la Enfermedad , Índice de Severidad de la Enfermedad , Polimorfismo de Nucleótido Simple , Aspartato Aminotransferasas/sangre , LDL-Colesterol/sangre , Asia Oriental/epidemiología , Pueblo Asiatico/genética , Pueblos del Este de Asia
2.
Hum Genomics ; 18(1): 48, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769549

RESUMEN

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Asunto(s)
Virus de la Influenza A , Virus de la Influenza B , Reacción en Cadena de la Polimerasa Multiplex , Aguas Residuales , Aguas Residuales/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Humanos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sensibilidad y Especificidad , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/aislamiento & purificación , Reproducibilidad de los Resultados , Gripe Humana/diagnóstico , Gripe Humana/virología , Gripe Humana/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
3.
PLoS Pathog ; 20(5): e1012231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753876

RESUMEN

Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.


Asunto(s)
Virus de la Influenza A , Gripe Humana , ARN Mensajero , ARN Viral , Proteínas de Unión al ARN , Animales , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virología , Virus de la Influenza A/genética , Gripe Humana/metabolismo , Gripe Humana/virología , Gripe Humana/genética , Transporte de ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Viral/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral
4.
Front Immunol ; 15: 1369311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601162

RESUMEN

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Asunto(s)
COVID-19 , Infecciones por VIH , Gripe Humana , MicroARNs , Humanos , Gripe Humana/genética , COVID-19/genética , SARS-CoV-2 , Biología Computacional , MicroARNs/genética , Factores de Transcripción , Regulación de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética
5.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622728

RESUMEN

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Asunto(s)
Alphainfluenzavirus , Medicamentos Herbarios Chinos , Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Neumonía , Ratones , Animales , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Neumonía/tratamiento farmacológico , Neumonía/genética , Inflamación , Biología de Sistemas , Perfilación de la Expresión Génica
6.
Int Immunopharmacol ; 132: 112051, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599098

RESUMEN

BACKGROUND: IgA Nephropathy (IgAN), the primary form of glomerulonephritis, presents significant clinical challenges due to its obscure pathogenesis and lack of targeted treatments. We conducted a proteome-wide Mendelian randomization (MR) study to identify therapeutic targets for IgAN. METHODS: Utilizing a plasma proteome dataset comprising 4907 blood plasma proteins as the exposure variable, and renal biopsy-confirmed IgAN cases as the outcome, this study employed MR to pinpoint proteins potentially pathogenic to IgAN. The robustness of our findings was affirmed through external dataset validation, reverse causation testing, and Bayesian colocalization analysis. Additionally, we conducted phenotypic scanning and analyzed downstream metabolites to investigate candidate proteins's biological function. RESULTS: In our study, a significant association was identified between an increase in neuraminidase 1 (NEU1) expression and the risk of IgAN. Specifically, a one standard deviation increase in NEU1 expression was associated with an odds ratio of 11.80 for the development of IgAN (95% confidence interval: 4.03-34.54). This association was substantiated across various statistical models and external validations. Colocalization analysis indicated a shared causal variant between NEU1 expression and IgAN. Furthermore, an increased influenza risk associated with NEU1 was observed, supporting the therapeutic potential of NEU1 inhibitors for IgAN. However, our study found no significant role for neuraminic acid-related metabolites in IgAN's development, suggesting an independent pathway for NEU1's influence. CONCLUSION: This study identifies NEU1 as a promising therapeutic target for IgAN, backed by robust genetic evidence. Future research should explore NEU1's therapeutic potential in diverse populations and clinical scenarios, further establishing its role in IgAN.


Asunto(s)
Glomerulonefritis por IGA , Análisis de la Aleatorización Mendeliana , Neuraminidasa , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Humanos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Gripe Humana/genética , Genómica , Proteoma , Terapia Molecular Dirigida
7.
Sci Signal ; 17(831): eadg7867, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593156

RESUMEN

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Ratones , Animales , Humanos , Virus de la Influenza A/fisiología , Ubiquitinación , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Replicación Viral , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Gripe Humana/genética , Interferones/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo
8.
J Virol ; 98(5): e0185723, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38567969

RESUMEN

The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE: Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.


Asunto(s)
Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Gripe Humana/genética , Interacciones Huésped-Patógeno/genética , Replicación Viral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Interferencia de ARN
9.
Environ Pollut ; 348: 123781, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492752

RESUMEN

Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-ß release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-ß, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Virosis , Humanos , Interferones , Gripe Humana/genética , Gripe Humana/metabolismo , Mucosa Respiratoria , Antivirales , Epitelio/metabolismo , Material Particulado/toxicidad
10.
mSystems ; 9(4): e0104823, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38446104

RESUMEN

Secondary bacterial challenges during influenza virus infection "superinfection") cause excessive mortality and hospitalization. Here, we present a longitudinal study of bulk gene expression changes in murine lungs during superinfection, with an initial influenza A virus infection and a subsequent Streptococcus pneumoniae infection. In addition to the well-characterized impairment of the host response, we identified superinfection-specific alterations in the global transcriptional program that are linked to the host's ability to resist the pathogens. Particularly, whereas superinfected mice manifested an excessive rapid induction of the resistance-to-infection program, there was a substantial tissue-level rewiring of this program: upon superinfection, interferon-regulated genes were switched from positive to negative correlations with the host's resistance state, whereas genes of fatty acid metabolism switched from negative to positive correlations with resistance states. Thus, the transcriptional resistance state in superinfection is reprogrammed toward repressed interferon signaling and induced fatty acid metabolism. Our findings suggest new insights into a tissue-level remodeling of the host defense upon superinfection, providing promising targets for future therapeutic interventions. IMPORTANCE: Secondary bacterial infections are the most frequent complications during influenza A virus (IAV) pandemic outbreaks, contributing to excessive morbidity and mortality in the human population. Most IAV-related deaths are attributed to Streptococcus pneumoniae (SP) infections, which usually begin within the first week of IAV infection in the respiratory tracts. Here, we focused on longitudinal transcriptional responses during a superinfection model consisting of an SP infection that follows an initial IAV infection, comparing superinfection to an IAV-only infection, an SP-only infection, and control treatments. Our longitudinal data allowed a fine analysis of gene expression changes during superinfection. For instance, we found that superinfected mice exhibited rapid gene expression induction or reduction within the first 12 h after encountering the second pathogen. Cell proliferation and immune response activation processes were upregulated, while endothelial processes, vasculogenesis, and angiogenesis were downregulated, providing promising targets for future therapeutic interventions. We further analyzed the longitudinal transcriptional responses in the context of a previously defined spectrum of the host's resistance state, revealing superinfection-specific reprogramming of resistance states, such as reprogramming of fatty acid metabolism and interferon signaling. The reprogrammed functions are compelling new targets for switching the pathogenic superinfection state into a single-infection state.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones Neumocócicas , Sobreinfección , Ratones , Humanos , Animales , Streptococcus pneumoniae , Sobreinfección/complicaciones , Estudios Longitudinales , Gripe Humana/genética , Infecciones Neumocócicas/genética , Inmunidad Innata/genética , Interferones , Ácidos Grasos
11.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467724

RESUMEN

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Femenino , Masculino , Animales , Ratones , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/metabolismo , Transcriptoma , Estrés Psicológico/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Corticosterona
12.
BMC Genomics ; 25(1): 257, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454348

RESUMEN

BACKGROUND: Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation. METHODS: The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential expression between severe and non-severe influenza patients. We employed three machine learning algorithms, namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vector Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associations with key genes. RESULTS: A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as potential biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correlation between the expression of HLA_DPA1 and lymphocytes. CONCLUSION: The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe influenza.


Asunto(s)
Gripe Humana , Humanos , Algoritmos , Biología Computacional , Bases de Datos Factuales , Gripe Humana/genética , Aprendizaje Automático
13.
Arch Virol ; 169(4): 74, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480558

RESUMEN

Triple motif protein 21 (TRIM21) has an antiviral function that inhibits various viral infections. However, its role in the progress of influenza A virus (IAV) infection is unclear. In this study, we investigated the role and molecular mechanism of TRIM21 in IAV infection. RT-qPCR was used to determine the level of TRIM21 mRNA, and ELISA was used to measure the levels of IFN-α, IFN-ß, IL-6, and TNF-α. The levels of the TRIM21, NP, TBK1, IRF3, p-TBK1, and p-IRF3 proteins were estimated by Western blot. The results showed that, after IAV infection, TRIM21 was upregulated in clinical patient serum and A549 cells, and this was correlated with the IFN response. Overexpression of TRIM21 reduced IAV replication and transcription in in vitro cell experiments. TRIM21 also increased IFN-α and IFN-ß levels and decreased IL-6 and TNF-α levels in A549 cells. In addition, overexpression of TRIM21 inhibited IAV-induced apoptosis. Further experiments demonstrated that TBK1-IRF3 signaling was activated by TRIM21 and was involved in the inhibitory effect of TRIM21 on virus replication. In summary, our study suggests that TRIM21 inhibits viral replication by activating the TBK1-IRF3 signaling pathway, further inhibiting the infection process of IAV.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Células A549 , Inflamación , Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón-alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
14.
Front Biosci (Landmark Ed) ; 29(3): 116, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38538289

RESUMEN

BACKGROUND: The Mammalian Target of Rapamycin (mTOR) signaling pathway regulates protein phosphorylation and exerts control over major cellular processes. mTOR is activated by the small G-protein Ras Homolog Enriched in Brain (Rheb), which is encoded by the Rheb1 and Rheb-like-1 (RhebL1) genes. There is currently a paucity of information on the role of RhebL1, and specifically its involvement in viral infection. In the present study we investigated the role of RhebL1 during human influenza A/NWS/33 (NWS/33) (H1N1) virus infection of rhesus monkey-kidney (LLC-MK2) cells and human type II alveolar epithelial (A549) cells. METHODS: To assess the efficiency of NWS/33 virus replication, the expression of viral nucleoprotein was examined by indirect immunofluorescence (IIF) and the viral yield by fifty percent tissue culture infectious dose assay. An RNA-mediated RNA interference approach was used to investigate the role of RhebL1 during NWS/33 infection. RhebL1 expression was evaluated by IIF, Western blotting, and enzyme-linked immunosorbent assays. A two-tailed Student's t-test was applied to evaluate differences between groups. RESULTS: RhebL1 was differentially expressed in the cell models used in this study. Silencing of the RhebL1 gene led to increased NWS/33 virus infection in A549 cells, but not in LLC-MK2 cells. Moreover, the expression of hyperphosphorylated cytokeratin 8, a marker of NWS/33 virus infection efficiency, increased in A549 cells depleted of RhebL1 but remained almost unchanged in LLC-MK2 cells. CONCLUSIONS: These are the first results showing involvement of the endogenous RhebL1 protein during viral infection. Our data suggests that RhebL1 exerts a host cell-dependent modulatory role during influenza virus infection. RhebL1 appears to be a restrictive factor against NWS/33 virus replication in A549 cells, but not in LLC-MK2.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Encéfalo/metabolismo , Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Macaca mulatta , Animales
15.
Dokl Biochem Biophys ; 516(1): 93-97, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38539009

RESUMEN

Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian-swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.


Asunto(s)
Especificidad del Huésped , Filogenia , Humanos , Animales , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Gripe Humana/virología , Gripe Humana/epidemiología , Gripe Humana/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética
16.
Cell Rep ; 43(3): 113833, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38416642

RESUMEN

Influenza A virus (IAV) represents a constant public health threat. The single-stranded, segmented RNA genome of IAV is replicated in host cell nuclei as a series of 8 ribonucleoprotein complexes (vRNPs) with RNA structures known to exert essential function to support viral replication. Here, we investigate RNA secondary structures and RNA interactions networks of the IAV genome and construct an in vivo structure model for each of the 8 IAV genome segments. Our analyses reveal an overall in vivo and in virio resemblance of the IAV genome conformation but also wide disparities among long-range and intersegment interactions. Moreover, we identify a long-range RNA interaction that exerts an essential role in genome packaging. Disrupting this structure displays reduced infectivity, attenuating virus pathogenicity in mice. Our findings characterize the in vivo RNA structural landscape of the IAV genome and reveal viral RNA structures that can be targeted to develop antiviral interventions.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Replicación Viral , Genoma , ARN Viral/genética , Virus de la Influenza A/genética , Interacciones Huésped-Patógeno , Genoma Viral , Gripe Humana/genética
17.
Nat Genet ; 56(3): 408-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424460

RESUMEN

Humans display remarkable interindividual variation in their immune response to identical challenges. Yet, our understanding of the genetic and epigenetic factors contributing to such variation remains limited. Here we performed in-depth genetic, epigenetic and transcriptional profiling on primary macrophages derived from individuals of European and African ancestry before and after infection with influenza A virus. We show that baseline epigenetic profiles are strongly predictive of the transcriptional response to influenza A virus across individuals. Quantitative trait locus (QTL) mapping revealed highly coordinated genetic effects on gene regulation, with many cis-acting genetic variants impacting concomitantly gene expression and multiple epigenetic marks. These data reveal that ancestry-associated differences in the epigenetic landscape can be genetically controlled, even more than gene expression. Lastly, among QTL variants that colocalized with immune-disease loci, only 7% were gene expression QTL, while the remaining genetic variants impact epigenetic marks, stressing the importance of considering molecular phenotypes beyond gene expression in disease-focused studies.


Asunto(s)
Gripe Humana , Humanos , Gripe Humana/genética , Individualidad , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Epigénesis Genética
18.
Virol Sin ; 39(2): 277-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246238

RESUMEN

Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Acoplamiento Viral , Internalización del Virus , Animales , Humanos , Ratones , Células A549 , Células CHO , Cricetulus , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Receptores Virales/genética , Colágeno/genética , Colágeno/metabolismo
19.
Brief Funct Genomics ; 23(2): 110-117, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340787

RESUMEN

With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Leucocitos Mononucleares , Gripe Humana/genética , COVID-19/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
20.
J Virol ; 98(1): e0116623, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054704

RESUMEN

Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.


Asunto(s)
Virus de la Influenza A , Proteínas no Estructurales Virales , Humanos , Sustitución de Aminoácidos , Aminoácidos/genética , ARN Polimerasas Dirigidas por ADN/genética , Virus de la Influenza A/genética , Gripe Humana/genética , Proteínas Virales/genética , Replicación Viral , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA