Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
PLoS Biol ; 21(10): e3002331, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862360

RESUMEN

Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1ß, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.


Asunto(s)
Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Mordeduras de Garrapatas , Animales , Ratones , Humanos , Adiponectina , Grupo Borrelia Burgdorferi/fisiología , Ixodes/fisiología , Mamíferos
2.
Microbiome ; 11(1): 151, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482606

RESUMEN

BACKGROUND: Ticks can transmit a broad variety of pathogens of medical importance, including Borrelia afzelii, the causative agent of Lyme borreliosis in Europe. Tick microbiota is an important factor modulating, not only vector physiology, but also the vector competence. Anti-microbiota vaccines targeting keystone taxa of tick microbiota can alter tick feeding and modulate the taxonomic and functional profiles of bacterial communities in the vector. However, the impact of anti-microbiota vaccine on tick-borne pathogen development within the vector has not been tested. RESULTS: Here, we characterized the Ixodes ricinus microbiota modulation in response to B. afzelii infection and found that the pathogen induces changes in the microbiota composition, its beta diversity and structure of bacterial community assembly. Tick microbiota perturbation by anti-microbiota antibodies or addition of novel commensal bacteria into tick midguts causes departures from the B. afzelii-induced modulation of tick microbiota which resulted in a lower load of the pathogen in I. ricinus. Co-occurrence networks allowed the identification of emergent properties of the bacterial communities which better defined the Borrelia infection-refractory states of the tick microbiota. CONCLUSIONS: These findings suggest that Borrelia is highly sensitive to tick microbiota perturbations and that departure from the modulation induced by the pathogen in the vector microbiota pose a high cost to the spirochete. Network analysis emerges as a suitable tool to identify emergent properties of the vector microbiota associated with infection-refractory states. Anti-microbiota vaccines can be used as a tool for microbiota perturbation and control of important vector-borne pathogens. Video Abstract.


Asunto(s)
Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ixodes/microbiología , Ixodes/fisiología , Grupo Borrelia Burgdorferi/fisiología , Enfermedad de Lyme/microbiología , Bacterias , Europa (Continente)
3.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461660

RESUMEN

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Asunto(s)
Distribución Animal , Vectores Arácnidos , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Humanos , Asia , Borrelia/genética , Borrelia/fisiología , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiología , Ixodes/microbiología , Ixodes/fisiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Europa (Continente) , Vectores Arácnidos/microbiología , Vectores Arácnidos/fisiología , Distribución Animal/fisiología , Adaptación Biológica/genética , Adaptación Biológica/fisiología
4.
Microb Ecol ; 83(1): 202-215, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33758979

RESUMEN

Exposure to environmental stressors, an increasingly recurring event in natural communities due to anthropogenic-induced environmental change, profoundly impacts disease emergence and spread. One mechanism through which this occurs is through stress-induced immunosuppression increasing disease susceptibility, prevalence, intensity and reactivation in hosts. We experimentally evaluated how exposure to stressors affected both the physiology of avian hosts and the prevalence of the zoonotic bacteria Borrelia burgdorferi sensu lato (s.l.), in two model species-the blackbird Turdus merula and the robin Erithacus rubecula captured in the wild, using xenodiagnoses and analysis of skin biopsies and blood. Although exposure to stressors in captivity induced physiological stress in birds (increased the number of circulating heterophils), there was no evidence of increased infectivity to xenodiagnostic ticks. However, Borrelia detection in the blood for both experimental groups of blackbirds was higher by the end of the captivity period. The infectivity and efficiency of transmission were higher for blackbirds than robins. When comparing different methodologies to determine infection status, xenodiagnosis was a more sensitive method than skin biopsies and blood samples, which could be attributed to mild levels of infection in these avian hosts and/or dynamics and timing of Borrelia infection relapses and redistribution in tissues.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Pájaros Cantores , Animales , Grupo Borrelia Burgdorferi/fisiología , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/veterinaria , Pájaros Cantores/microbiología
5.
Ticks Tick Borne Dis ; 12(5): 101766, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161868

RESUMEN

Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.


Asunto(s)
Aves/parasitología , Grupo Borrelia Burgdorferi/fisiología , Interacciones Huésped-Patógeno , Mamíferos/parasitología , Reptiles/parasitología , Animales , Grupo Borrelia Burgdorferi/clasificación
6.
Ticks Tick Borne Dis ; 12(2): 101611, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33360386

RESUMEN

Antigen presentation is a crucial innate immune cell function that instructs adaptive immune cells. Loss of this pathway severely impairs the development of adaptive immune responses. To investigate whether B. burgdorferi sensu lato. spirochetes modulate the induction of an effective immune response, primary human PBMCs were isolated from healthy volunteers and stimulated with B. burgdorferi s.l. Through cell entry, TNF receptor I, and RIP1 signaling cascades, B. burgdorferi s.l. strongly downregulated genes and proteins involved in antigen presentation, specifically HLA-DM, MHC class II and CD74. Antigen presentation proteins were distinctively inhibited in monocyte subsets, monocyte-derived macrophages, and dendritic cells. When compared to a range of other pathogens, B. burgdorferi s.l.-induced suppression of antigen presentation appears to be specific. Inhibition of antigen presentation interfered with T-cell recognition of B. burgdorferi s.l., and memory T-cell responses against Candidaalbicans. Re-stimulation of PBMCs with the commensal microbe C.albicans following B. burgdorferi s.l. exposure resulted in significantly reduced IFN-γ, IL-17 and IL-22 production. These findings may explain why patients with Lyme borreliosis develop delayed adaptive immune responses. Unravelling the mechanism of B. burgdorferi s.l.-induced inhibition of antigen presentation, via cell entry, TNF receptor I, and RIP1 signaling cascades, explains the difficulty to diagnose the disease based on serology and to obtain an effective vaccine against Lyme borreliosis.


Asunto(s)
Presentación de Antígeno/inmunología , Grupo Borrelia Burgdorferi/fisiología , Candida albicans/fisiología , Proteínas de Complejo Poro Nuclear/inmunología , Proteínas de Unión al ARN/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Humanos
7.
PLoS One ; 15(5): e0233771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470102

RESUMEN

This study addresses the modifications that future climate conditions could impose on the transmission cycles of Borrelia burgdorferi s.l. by the tick Ixodes ricinus in Europe. Tracking the distribution of foci of a zoonotic agent transmitted by vectors as climate change shapes its spatial niche is necessary to issue self-protection measures for the human population. We modeled the current distribution of the tick and its predicted contact rates with 18 species of vertebrates known to act as reservoirs of the pathogen. We approached an innovative way for estimating the possibility of permanent foci of Borrelia afzelii or Borrelia garinii tracking separately the expected spatial overlap among ticks and reservoirs for these pathogens in Europe. Environmental traits were obtained from MODIS satellite images for the years 2002-2017 (baseline) and projected on scenarios for the years 2030 and 2050. The ratio between MODIS baseline/current interpolated climatologies (WorldClim), and the ratio between MODIS-projected year 2050 with five climate change scenarios for that year (WorldClim) revealed no significant differences, meaning that projections from MODIS are reliable. Models predict that contact rates between the tick and reservoirs of either B. garinii or B. afzelii are spatially different because those have different habitats overlap. This is expected to promote different distribution patterns because of the different responses of both groups of reservoirs to environmental variables. Models for 2030 predict an increase in latitude, mainly in the circulation of B. garinii, with large areas of expected permanent contact between vector and reservoirs in Nordic countries and central Europe. However, climate projections for the year 2050 predict an unexpected scenario of contact disruption. Though large areas in Europe would be suitable for circulation of the pathogens, the predicted lack of niche overlap among ticks and reservoirs could promote a decrease in permanent foci. This development represents a proof-of-concept for the power of jointly modeling both the vector and reservoirs in a common framework. A deeper understanding of the unanticipated result regarding the year 2050 is needed.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Cambio Climático , Ixodes , Enfermedad de Lyme , Animales , Vectores Arácnidos/microbiología , Vectores Arácnidos/fisiología , Ecosistema , Europa (Continente) , Humanos , Ixodes/microbiología , Ixodes/fisiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/microbiología , Modelos de Interacción Espacial
8.
Ticks Tick Borne Dis ; 11(4): 101416, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209348

RESUMEN

The electromagnetic field (EMF) is known to influence functions of the nervous, cardiovascular and reproductive systems of many animals, including ticks. The aim of this study was to test the behavior of ticks in the presence of radio-frequency EMF. For testing, 160 adult male and 140 adult female unfed Ixodes ricinus ticks were used. Individuals were exposed to 900 MHz EMF in the Radiation-Shielded Tube (RST). Ticks were attracted to the irradiated area. This effect was significantly stronger for ticks infected with Rickettsia spp., suggesting that pathogens can alter the ticks' response to environmental stimuli. These results lead to the question of whether man-made EMF may have an impact on I. ricinus activity and, as such, be a contributing factor to the ongoing changes in the distribution of the tick and its pathogens currently observed in Europe and elsewhere.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Campos Electromagnéticos , Radiación Electromagnética , Ixodes/efectos de la radiación , Rickettsia/fisiología , Animales , Femenino , Ixodes/microbiología , Ixodes/fisiología , Masculino , Taxia
9.
Ticks Tick Borne Dis ; 11(4): 101411, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32178995

RESUMEN

The goal of this paper is to characterize the clinical presentation, serological results, current antibiotic treatment practice, including compliance with current European guidelines, and outcome in adults with Lyme neuroborreliosis (LNB) diagnosed at departments of infectious diseases in Denmark. Using a nationwide prospective cohort of patients with central nervous system infections, we identified all adults (≥ 18 years of age) treated for LNB at departments of infectious diseases in Denmark from 2015 through 2017. The database contains information on baseline demographics, history of tick bite, erythema migrans, clinical presentation, laboratory results of blood samples, and cerebrospinal (CSF) biochemistry (e.g. specific Borrelia burgdorferi sensu lato (s.l.) antibodies in serum, B. burgdorferi s.l. intrathecal antibody index) as well as antibiotic therapy. Outcome was assessed by the Glasgow Outcome Scale (GOS) and the presence of residual symptoms at follow-up one month after discharge. We included 194 LNB patients with a median age of 59 years (range 18-85 years, interquartile range [IQR] 47-69 years). The female-to-male ratio was 0.8. A total of 177 of 191 (93 %) of patients had early (second stage) LNB. A history of tick bite or erythema migrans was registered in 75 (39 %) and 49 (25 %) patients, respectively. The median duration of neurological symptoms before first hospital contact was 21 days (range 0-600 days, IQR 10-42 days). Predominant symptoms consisted of radicular pain in 135 of 194 (70 %), cranial nerve paresis in 88 of 194 (45 %), headache in 71 of 185 (38 %), and extremity paresis in 33 of 194 (17 %) patients. Serum-B. burgdorferi s.l. IgM and/or IgG antibodies were detectable in 166 of 181 (92 %) patients at the time of first CSF investigation. Median duration of antibiotic treatment was 14 days (range 10-35 days, IQR 14-21 days) and 59 (39 %) of the patients received intravenous ceftriaxone and/or benzylpenicillin G throughout treatment. At the 1-month follow-up, GOS was unfavorable (< 5) in 54 of 193 (28 %) patients. An unfavorable GOS score was more often registered in patients with ≥ 45 days of symptom duration (20 of 45 (44 %) vs. 34 of 145 (23 %); P = 0.006). In conclusion, a European cohort of adult patients with LNB diagnosed between 2015-2017 presented with classic symptoms and CSF findings. However, a substantial diagnostic delay was still observed. In disagreement with current guidelines, a substantial part of LNB patients were treated with antibiotics longer than 14 days and/or intravenously as route of administration.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Neuroborreliosis de Lyme , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico Tardío , Dinamarca/epidemiología , Femenino , Humanos , Incidencia , Neuroborreliosis de Lyme/diagnóstico , Neuroborreliosis de Lyme/epidemiología , Neuroborreliosis de Lyme/microbiología , Neuroborreliosis de Lyme/prevención & control , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
10.
Ticks Tick Borne Dis ; 11(3): 101359, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32067949

RESUMEN

Use of emerging technology allowing for identification of genetic material from pathogens and endosymbionts in ticks collected from humans, domestic animals, wildlife, or the environment has resulted in an avalanche of new data on tick-microorganism associations. This rapidly growing stream of new information is a tremendous resource but also presents challenges, including how detection of pathogen genetic material in ticks should best be interpreted. There is a tendency in the more recent published literature to incorrectly use the term "vector" based on detection of pathogen genetic material from tick species not experimentally confirmed to serve as vectors of the pathogen in question. To serve as a vector of a horizontally maintained pathogen, such as a Borrelia burgdorferi sensu lato (s.l.) Lyme borreliosis spirochete, the tick species in question must be capable of acquiring the pathogen while feeding in the larval or nymphal stage on an infectious host, maintaining it transstadially through the molt, and then transmitting the pathogen to a naïve host while feeding in the subsequent nymphal or adult stage. This review examines the experimental evidence for and against species of hard (ixodid) ticks from different genera to serve as vectors of B. burgdorferi s.l. spirochetes. Of the 18 Ixodes species ticks evaluated to date, 13 were experimentally confirmed as vectors of B. burgdorferi s.l. spirochetes. These studies focused primarily on the three major Lyme borreliosis agents: Borrelia burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. In striking contrast, none of 8 tick species from other genera (1 Amblyomma species, 5 Dermacentor species, and 2 Haemaphysalis species) evaluated to date were unequivocally experimentally confirmed as vectors of B. burgdorferi s.l. spirochetes. The strength of the evidence for or against each tick species to serve as a vector of B. burgdorferi s.l. spirochetes is discussed together with key knowledge gaps and research challenges.


Asunto(s)
Vectores Arácnidos/microbiología , Grupo Borrelia Burgdorferi/fisiología , Ixodidae/microbiología , Enfermedad de Lyme/transmisión , Animales , Especificidad de la Especie
11.
Parasit Vectors ; 13(1): 34, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959217

RESUMEN

BACKGROUND: Rodents are considered to contribute strongly to the risk of tick-borne diseases by feeding Ixodes ricinus larvae and by acting as amplifying hosts for pathogens. Here, we tested to what extent these two processes depend on rodent density, and for which pathogen species rodents synergistically contribute to the local disease risk, i.e. the density of infected nymphs (DIN). METHODS: In a natural woodland, we manipulated rodent densities in plots of 2500 m2 by either supplementing a critical food source (acorns) or by removing rodents during two years. Untreated plots were used as controls. Collected nymphs and rodent ear biopsies were tested for the presence of seven tick-borne microorganisms. Linear models were used to capture associations between rodents, nymphs, and pathogens. RESULTS: Investigation of data from all plots, irrespective of the treatment, revealed a strong positive association between rodent density and nymphal density, nymphal infection prevalence (NIP) with Borrelia afzelii and Neoehrlichia mikurensis, and hence DIN's of these pathogens in the following year. The NIP, but not the DIN, of the bird-associated Borrelia garinii, decreased with increasing rodent density. The NIPs of Borrelia miyamotoi and Rickettsia helvetica were independent of rodent density, and increasing rodent density moderately increased the DINs. In addition, NIPs of Babesia microti and Spiroplasma ixodetis decreased with increasing rodent density, which had a non-linear association with DINs of these microorganisms. CONCLUSIONS: A positive density dependence for all rodent- and tick-associated tick-borne pathogens was found, despite the observation that some of them decreased in prevalence. The effects on the DINs were variable among microorganisms, more than likely due to contrasts in their biology (including transmission modes, host specificity and transmission efficiency). The strongest associations were found in rodent-associated pathogens that most heavily rely on horizontal transmission. Our results draw attention to the importance of considering transmission mode of a pathogen while developing preventative measures to successfully reduce the burden of disease.


Asunto(s)
Vectores Arácnidos/microbiología , Enfermedades Transmisibles/epidemiología , Ixodes/microbiología , Roedores/crecimiento & desarrollo , Roedores/parasitología , Enfermedades por Picaduras de Garrapatas/epidemiología , Animales , Aves , Grupo Borrelia Burgdorferi/fisiología , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/transmisión , ADN Bacteriano/aislamiento & purificación , Ehrlichia/fisiología , Bosques , Transmisión Vertical de Enfermedad Infecciosa , Modelos Lineales , Países Bajos/epidemiología , Densidad de Población , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Estaciones del Año , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/transmisión
12.
Ticks Tick Borne Dis ; 11(2): 101363, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31987819

RESUMEN

Lyme borreliosis caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex is the most common tick-borne disease in Europe. In addition, the relapsing-fever spirochaete Borrelia miyamotoi, which has been associated with febrile illness and meningoencephalitis in immunocompromised persons, is present in Europe. This study investigated Borrelia prevalence and species distribution in ticks removed from humans and sent as diagnostic material to the Institute for Parasitology, University of Veterinary Medicine Hannover, in 2013-2017. A probe-based real-time PCR was carried out and Borrelia-positive samples were subjected to species determination by reverse line blot (RLB), including a B. miyamotoi-specific probe. The overall Borrelia-infection rate as determined by real-time PCR was 20.02 % (510/2547, 95 % CI: 18.48-21.63 %), with annual prevalences ranging from 17.17 % (90/524, 95 % CI: 14.04-20.68 %) in 2014 to 24.12 % (96/398, 95 % CI: 19.99-28.63 %) in 2015. In total, 271/475 (57.1 %) positive samples available for RLB were successfully differentiated. Borrelia afzelii was detected in 30.53 % of cases (145/475, 95 % CI: 26.41-34.89), followed by B. garinii/B. bavariensis (13.26 % [63/475], 95 % CI: 10.34-16.65). Borrelia valaisiana occurred in 5.89 % (28/475, 95 % CI: 3.95-8.41), B. spielmanii in 4.63 % (22/475, 95 % CI: 2.93-6.93), B. burgdorferi sensu stricto (s.s.)/B. carolinensis in 2.32 % (11/475, 95 % CI: 1.16-4.11), B. lusitaniae in 0.63 % (3/475, 95 % CI: 0.13-1.83) and B. bisettiae in 0.42 % (2/475, 95 % CI: 0.05-1.51) of positive ticks. Borrelia kurtenbachii was not detected, while B. miyamotoi was identified in 7.37 % (35/475, 95 % CI: 5.19-10.10) of real-time PCR-positive samples. Sanger sequencing of B. garinii/B. bavariensis-positive ticks revealed that the majority were B. garinii-infections (50/52 successfully amplified samples), while only 2 ticks were infected with B. bavariensis. Furthermore, 6/12 B. burgdorferi s.s./B. carolinensis-positive samples could be differentiated; all of them were identified as B. burgdorferi sensu stricto. Thirty-nine ticks (8.21 %, 95 % CI: 5.90-11.05) were coinfected with two different species. Comparison of the species distribution between ticks removed from humans in 2015 and questing ticks collected in the same year and the same area revealed a significantly higher B. afzelii-prevalence in diagnostic tick samples than in questing ticks, confirming previous observations. The obtained data indicate that Borrelia prevalence fluctuated in the same range as observed in a previous study, analysing the period from 2006 to 2012. Detection of B. miyamotoi in 7.37 % of Borrelia-positive samples points to the fact that clinicians should be aware of this pathogen as a differential diagnosis in cases of febrile illness.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Ixodidae/microbiología , Enfermedad de Lyme/epidemiología , Animales , Grupo Borrelia Burgdorferi/clasificación , Femenino , Alemania/epidemiología , Humanos , Ixodidae/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Enfermedad de Lyme/microbiología , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Microb Ecol ; 79(3): 756-769, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31612324

RESUMEN

Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.


Asunto(s)
Enfermedades de las Aves/microbiología , Grupo Borrelia Burgdorferi/fisiología , Reservorios de Enfermedades/veterinaria , Enfermedad de Lyme/veterinaria , Pájaros Cantores , Animales , Reservorios de Enfermedades/microbiología , Vectores de Enfermedades , Femenino , Enfermedad de Lyme/microbiología , Masculino
14.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540991

RESUMEN

Multistrain microbial pathogens often induce strain-specific antibody responses in their vertebrate hosts. Mothers can transmit antibodies to their offspring, which can provide short-term, strain-specific protection against infection. Few experimental studies have investigated this phenomenon for multiple strains of zoonotic pathogens occurring in wildlife reservoir hosts. The tick-borne bacterium Borrelia afzelii causes Lyme disease in Europe and consists of multiple strains that cycle between the tick vector (Ixodes ricinus) and vertebrate hosts, such as the bank vole (Myodes glareolus). We used a controlled experiment to show that female bank voles infected with B. afzelii via tick bite transmit protective antibodies to their offspring. To test the specificity of protection, the offspring were challenged using a natural tick bite challenge with either the maternal strain to which the mothers had been exposed or a different strain. The maternal antibodies protected the offspring against a homologous infectious challenge but not against a heterologous infectious challenge. The offspring from the uninfected control mothers were equally susceptible to both strains. Borrelia outer surface protein C (OspC) is an antigen that is known to induce strain-specific immunity. Maternal antibodies in the offspring reacted more strongly with homologous than with heterologous recombinant OspC, but other antigens may also mediate strain-specific immunity. Our study shows that maternal antibodies provide strain-specific protection against B. afzelii in an ecologically important rodent reservoir host. The transmission of maternal antibodies may have important consequences for the epidemiology of multistrain pathogens in nature.IMPORTANCE Many microbial pathogen populations consist of multiple strains that induce strain-specific antibody responses in their vertebrate hosts. Females can transmit these antibodies to their offspring, thereby providing them with short-term strain-specific protection against microbial pathogens. We investigated this phenomenon using multiple strains of the tick-borne microbial pathogen Borrelia afzelii and its natural rodent reservoir host, the bank vole, as a model system. We found that female bank voles infected with B. afzelii transmitted to their offspring maternal antibodies that provided highly efficient but strain-specific protection against a natural tick bite challenge. The transgenerational transfer of antibodies could be a mechanism that maintains the high strain diversity of this tick-borne pathogen in nature.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Arvicolinae , Grupo Borrelia Burgdorferi/fisiología , Inmunidad Materno-Adquirida/inmunología , Enfermedad de Lyme/inmunología , Enfermedades de los Roedores/inmunología , Zoonosis/inmunología , Animales , Enfermedad de Lyme/parasitología , Enfermedades de los Roedores/parasitología , Zoonosis/parasitología
15.
Med Vet Entomol ; 33(4): 512-520, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31173386

RESUMEN

Spirochetes from the Borrelia burgdorferi sensu lato (s.l.). (Spirochaetales: Spirochaetaceae) species complex, including the causative agents of Lyme borreliosis, have been isolated from ticks, vertebrate reservoirs and humans. Previous analyses based on direct molecular detection in ticks indicated a considerable diversity of B. burgdorferi s.l. complex in Serbia. The present study aimed (a) to isolate borrelia strains from Serbia; (b) to determine their genotypic characteristics; and (c) to establish a collection of viable B. burgdorferi s.l. strains for further biological, ecological and genetic studies. For the present study, 231 adult Ixodes ricinus (Ixodida: Ixodidae) ticks from 16 ecologically different localities in Serbia were individually processed to cultivate B. burgdorferi s.l. This led to the isolation of 36 strains. A hbb gene quantitative real-time polymerase chain reaction (PCR) based on melting temperature determination and ospA gene sequencing were used to genotype the isolated spirochetes. The species identified based on the hbb gene real-time PCR were: Borrelia lusitaniae (44.4%), Borrelia afzelii (36.1%), Borrelia garinii (13.9%) and Borrelia valaisiana (5.6%), whereas the ospA sequence analysis revealed the occurrence of Borrelia bavariensis. This is the first report of the isolation of B. lusitaniae, B. garinii, B. bavariensis and B. valaisiana strains in Serbia.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Genotipo , Ixodes/microbiología , Microbiota , Animales , Grupo Borrelia Burgdorferi/clasificación , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/aislamiento & purificación , Enfermedad de Lyme , Serbia , Spirochaetales/genética , Spirochaetales/aislamiento & purificación , Spirochaetales/fisiología
16.
Parasit Vectors ; 12(1): 237, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097026

RESUMEN

The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?


Asunto(s)
Antibacterianos/farmacología , Grupo Borrelia Burgdorferi/fisiología , Enfermedad de Lyme/microbiología , Viabilidad Microbiana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Grupo Borrelia Burgdorferi/efectos de los fármacos , Humanos , Recurrencia
17.
Exp Appl Acarol ; 78(1): 113-126, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31102133

RESUMEN

Green areas located within large cities, as natural ecotypes, are a convenient habitat for ticks and their use as recreational areas is associated with the potential risk of acquiring tick-borne diseases. This study estimated the I. ricinus tick density, prevalence of infection with Borrelia species and the diversity of these bacteria in a green urban area (Olsztyn) of north-eastern Poland, an endemic region of tick-borne diseases. The ticks were collected during spring and autumn of 2015, at sites differing in the degree of human pressure and habitat. Borrelia species detection, typing and a molecular phylogenetic analysis were carried out based on the sequenced flaB gene. The overall mean abundance of I. ricinus was 2.0 ± 1.55 ticks per 100 m2. The density of I. ricinus did not vary significantly between sites. According to semi-qualitative tick abundance categories, the collection sites were classified as 'very low' and 'low' tick abundance category. The overall infection rate of I. ricinus with Borrelia spirochaetes was 27.4%. The infection rate of adult ticks (42.0%) was three times higher than with nymphs (14.3%). Based on the restriction patterns and sequencing, B. afzelii (93.1%; 27/29), B. valaisiana 3.5% (1/29) and B. miyamotoi (3.5%; 1/29), related to the relapsing fever (RF) spirochaetes, were detected. No co-infections were found. Borrelia miyamotoi, detected for the first time in ticks in the north-eastern urban areas of Poland, was identical to isolates described as European-type. The Borrelia spirochaete infection rate of I. ricinus ticks in an urban area indicated a high risk of LB. Physicians should also be aware of B. miyamotoi infections among patients with a history of tick-bites in north-eastern Poland.


Asunto(s)
Vectores Arácnidos/microbiología , Vectores Arácnidos/fisiología , Borrelia/fisiología , Ixodes/microbiología , Ixodes/fisiología , Animales , Vectores Arácnidos/crecimiento & desarrollo , Grupo Borrelia Burgdorferi/fisiología , Ciudades , Femenino , Ixodes/crecimiento & desarrollo , Masculino , Microbiota , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Polonia , Densidad de Población
18.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910791

RESUMEN

Quantitative and microscopic tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs has shown a transmission cycle different from that of Borrelia burgdorferi and Ixodes scapularisBorrelia afzelii organisms are abundant in the guts of unfed I. ricinus nymphs, and their numbers continuously decrease during feeding. Borrelia afzelii spirochetes are present in murine skin within 1 day of tick attachment. In contrast, spirochetes were not detectable in salivary glands at any stage of tick feeding. Further experiments demonstrated that tick saliva is not essential for B. afzelii infectivity, the most important requirement for successful host colonization being a change in expression of outer surface proteins that occurs in the tick gut during feeding. Spirochetes in vertebrate mode are then able to survive within the host even in the absence of tick saliva. Taken together, our data suggest that the tick gut is the decisive organ that determines the competence of I. ricinus to vector B. afzelii We discuss possible transmission mechanisms of B. afzelii spirochetes that should be further tested in order to design effective preventive and therapeutic strategies against Lyme disease.


Asunto(s)
Vectores Arácnidos/microbiología , Grupo Borrelia Burgdorferi/fisiología , Ixodes/microbiología , Enfermedad de Lyme/transmisión , Animales , Vectores Arácnidos/fisiología , Femenino , Humanos , Ixodes/fisiología , Enfermedad de Lyme/microbiología , Ratones , Ratones Endogámicos C3H , Ninfa/microbiología
19.
Eur J Clin Microbiol Infect Dis ; 38(2): 201-208, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30456435

RESUMEN

Lyme disease (borreliosis) is one of the most common vector-borne diseases worldwide. Its incidence and geographic expansion has been steadily increasing in the last decades. Lyme disease is caused by Borrelia burgdorferi sensu lato, a heterogeneous group of which three genospecies have been systematically associated to Lyme disease: B. burgdorferi sensu stricto Borrelia afzelii and Borrelia garinii. Geographical distribution and clinical manifestations vary according to the species involved. Lyme disease clinical manifestations may be divided into three stages. Early localized stage is characterized by erythema migrans in the tick bite site. Early disseminated stage may present multiple erythema migrans lesions, borrelial lymphocytoma, lyme neuroborreliosis, carditis, or arthritis. The late disseminated stage manifests with acordermatitis chronica atrophicans, lyme arthritis, and neurological symptoms. Diagnosis is challenging due to the varied clinical manifestations it may present and usually involves a two-step serological approach. In the current review, we present a thorough revision of the clinical manifestations Lyme disease may present. Additionally, history, microbiology, diagnosis, post-treatment Lyme disease syndrome, treatment, and prognosis are discussed.


Asunto(s)
Grupo Borrelia Burgdorferi/fisiología , Enfermedad de Lyme , Enfermedades Cutáneas Bacterianas , Animales , Antibacterianos/uso terapéutico , Grupo Borrelia Burgdorferi/clasificación , Grupo Borrelia Burgdorferi/efectos de los fármacos , Técnicas de Laboratorio Clínico , Humanos , Ixodes/clasificación , Ixodes/microbiología , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/tratamiento farmacológico , Enfermedad de Lyme/patología , Enfermedad de Lyme/fisiopatología , Pronóstico , Enfermedades Cutáneas Bacterianas/diagnóstico , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/patología , Enfermedades Cutáneas Bacterianas/fisiopatología , Resultado del Tratamiento
20.
Artículo en Inglés | MEDLINE | ID: mdl-31921706

RESUMEN

Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.


Asunto(s)
Antibiosis/fisiología , Grupo Borrelia Burgdorferi/fisiología , Interacciones Microbiota-Huesped/fisiología , Ixodes/microbiología , Enfermedad de Lyme/transmisión , Animales , Vectores Artrópodos/microbiología , Grupo Borrelia Burgdorferi/clasificación , Reservorios de Enfermedades/microbiología , Larva/microbiología , Enfermedad de Lyme/microbiología , Ratones , Ninfa/microbiología , Estaciones del Año , Enfermedades Transmitidas por Vectores/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA