RESUMEN
By performing differential scanning calorimetry(DSC) measurements on RNase A, we studied the stabilization provided by the addition of potassium aspartate(KAsp) or potassium glutamate (KGlu) and found that it leads to a significant increase in the denaturation temperature of the protein. The stabilization proves to be mainly entropic in origin. A counteraction of the stabilization provided by KAsp or KGlu is obtained by adding common denaturants such as urea, guanidinium chloride, or guanidinium thiocyanate. A rationalization of the experimental data is devised on the basis of a theoretical approach developed by one of the authors. The main contribution to the conformational stability of globular proteins comes from the gain in translational entropy of water and co-solute ions and/or molecules for the decrease in solvent-excluded volume associated with polypeptide folding (i.e., there is a large decrease in solvent-accessible surface area). The magnitude of this entropic contribution increases with the number density and volume packing density of the solution. The two destabilizing contributions come from the conformational entropy of the chain, which should not depend significantly on the presence of co-solutes, and from the direct energetic interactions between co-solutes and the protein surface in both the native and denatured states. It is the magnitude of the latter that discriminates between stabilizing and destabilizing agents.
Asunto(s)
Ácido Aspártico , Ácido Glutámico , Desnaturalización Proteica , Ácido Aspártico/química , Desnaturalización Proteica/efectos de los fármacos , Ácido Glutámico/química , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Termodinámica , Rastreo Diferencial de Calorimetría , Entropía , Estabilidad Proteica , Guanidina/química , Guanidina/farmacología , Urea/química , Urea/farmacología , Conformación ProteicaRESUMEN
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia. Type 2 diabetes mellitus (T2DM) represents approximately 90 % of all DM cases and is primarily caused by an imbalance in blood glucose homeostasis due to inadequate insulin secretion or insulin resistance. This study explores the potential therapeutic effects of chitosan guanidine (CSG) on a T2DM mouse model. The findings reveal that CSG significantly enhances oral glucose tolerance (OGTT) and insulin sensitivity (ITT), reduces fasting blood glucose (FBG) levels, and suppresses the expression of proinflammatory cytokines in T2DM mice. These changes improve insulin resistance and diminish inflammation. Additionally, CSG markedly ameliorates lipid metabolism disorders, lowers total cholesterol (TC) and triglyceride (TG) levels, and inhibits hepatic fat accumulation. 16S rRNA and Spearman correlation analyses indicate that CSG promotes the relative abundance of probiotic genera such as Bacteroidota, Patescibacteria, Actinobacteria, and Cyanobacteria. These bacteria are positively correlated with short-chain fatty acids (SCFAs) and high-density lipoprotein cholesterol (HDLC) levels. Conversely, CSG reduces the relative abundance of pathogenic bacteria, including Proteobacteria and Ralstonia, leading to an improved intestinal microbial community composition in T2DM mice and alleviating T2DM symptoms. These results suggest that CSG holds significant potential as a non-insulin therapeutic agent for diabetes management.
Asunto(s)
Glucemia , Quitosano , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Guanidina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/sangre , Quitosano/farmacología , Ratones , Glucemia/metabolismo , Guanidina/farmacología , Masculino , Resistencia a la Insulina , Diabetes Mellitus Experimental/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Citocinas/sangreRESUMEN
Over last years, hydrogels based on natural polymers have attracted considerable interest as materials for wound healing. Herein, hydrogel films based on kappa-carrageenan and guanidinium polyampholytes were prepared by the in situ physical cross-linking with potassium chloride and borax, respectively. The polyampholytes were obtained by a free radical copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride and unsaturated acids. To characterize the composite films, NMR, FTIR, SEM, TGA, XRD, element analysis and tensile test were used. Ampicillin was incorporated into the hydrogels to enhance wound healing potential. The healing-related characteristics, including swelling ratio, drug release and antimicrobial activity, were assessed. The equilibrium swelling ratios were in the range of 3.9-6.5 depending on the polyampholyte composition. According to the in vitro ampicillin release studies, 30-43 % of ampicillin was released from the hydrogels after 5 h at 37 °C and pH 7.4, with drug release being temperature and pH dependent. The ampicillin-loaded films showed a remarkable antimicrobial effect. The inhibition sizes for Escherichia coli and Staphylococcus aureus were 1.10-1.85 and 1.95-2.60 cm, respectively. Although the bi-polymeric hydrogels were thoroughly characterized, with the in vitro study of their biocidal effects carried out in this work, the in vivo drug release assessment needs to be further explored.
Asunto(s)
Antibacterianos , Carragenina , Liberación de Fármacos , Escherichia coli , Guanidina , Hidrogeles , Staphylococcus aureus , Cicatrización de Heridas , Carragenina/química , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Guanidina/química , Guanidina/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Ampicilina/farmacología , Ampicilina/química , Desinfectantes/farmacología , Desinfectantes/química , Pruebas de Sensibilidad Microbiana , Polímeros/química , Concentración de Iones de HidrógenoRESUMEN
Parasite-derived new permeation pathways (NPPs) expressed at the red blood cell (RBC) membrane enable Plasmodium parasites to take up nutrients from the plasma to facilitate their survival. Thus, NPPs represent a potential novel therapeutic target for malaria. The putative channel component of the NPP in the human malaria parasite P. falciparum is encoded by mutually exclusively expressed clag3.1/3.2 genes. Complicating the study of the essentiality of these genes to the NPP is the addition of three clag paralogs whose contribution to the P. falciparum channel is uncertain. Rodent malaria P. berghei contains only two clag genes, and thus studies of P. berghei clag genes could significantly aid in dissecting their overall contribution to NPP activity. Previous methods for determining NPP activity in a rodent model have utilised flux-based assays of radioisotope-labelled substrates or patch clamping. This study aimed to ratify a streamlined haemolysis assay capable of assessing the functionality of P. berghei NPPs. Several isotonic lysis solutions were tested for their ability to preferentially lyse infected RBCs (iRBCs), leaving uninfected RBCs (uRBCs) intact. The osmotic lysis assay was optimised and validated in the presence of NPP inhibitors to demonstrate the uptake of the lysis solution via the NPPs. Guanidinium chloride proved to be the most efficient reagent to use in an osmotic lysis assay to establish NPP functionality. Furthermore, following treatment with guanidinium chloride, ring-stage parasites could develop into trophozoites and schizonts, potentially enabling use of guanidinium chloride for parasite synchronisation. This haemolysis assay will be useful for further investigation of NPPs in P. berghei and could assist in validating its protein constituents.
Asunto(s)
Eritrocitos , Guanidina , Hemólisis , Malaria , Plasmodium berghei , Plasmodium berghei/efectos de los fármacos , Animales , Hemólisis/efectos de los fármacos , Guanidina/farmacología , Eritrocitos/parasitología , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Ratones , Malaria/tratamiento farmacológico , Malaria/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , HumanosRESUMEN
Colistin (CST) is considered as "agent of last resort" against gram-negative bacteria as feed additive. Its clinical effectiveness has reduced since the emergence of mcr-1 gene in ducks. Isopropoxy benzene guanidine (IBG), a new guanidine derivative, showed positive effects on improving animal weights and alleviating intestinal pathogens, therefore, the objective of this study was to evaluate the effect of this compound supplement with CST in ducks and explore the possibilities in feed additive. A total of fifteen duck-origin Escherichia coli carrying the mcr-1 gene were included in this study. A checkerboard microdilution assay was used to evaluate the in vitro antibacterial activity of IBG combined with CST against mcr-1-positive E. coli. A 3-by-2 time-kill array of IBG (16, 32, and 64 µg/mL) and CST (1/2 MIC and 1/4 MIC) over 24 hours was utilized to characterize the activity of the agents alone and in combination against E. coli strain 1 in vitro. The intestinal colonization model was used to evaluate the in vivo effect of IBG combined with CST. These results indicated that the combination of IBG plus CST showed a synergistic effect against all clinical isolates (FICI < 0.5). The bacterial burden was reduced by more than 2 log10 CFU/mL when E. coli strain 1 was tested with 1/2 MIC CST plus 64 µg/mL IBG for 24 h. Further experiments in vivo demonstrated that the CST combined with IBG was able to increase duck weights, reduced intestinal pathogenic E. coli and showed a synergistic antibacterial effect. Combination of CST (4 mg/kg b.w.) plus IBG (32 or 64 mg/kg b.w.) achieved 1.84 to 3.29 log10 CFU/g killing after 7 d of therapy, which was significantly different from that in the challenge control group (p<0.05). In summary, our study demonstrated the potential use of IBG as feed additive for veterinary purposes in ducks and provided new insights into overcoming resistance in the future.
Asunto(s)
Antibacterianos , Colistina , Sinergismo Farmacológico , Patos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/efectos de los fármacos , Colistina/farmacología , Colistina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana/veterinaria , Enfermedades Intestinales/veterinaria , Enfermedades Intestinales/microbiología , Enfermedades Intestinales/tratamiento farmacológico , Guanidina/farmacología , Alimentación Animal/análisisRESUMEN
Biofilm-associated infections remain a tremendous obstacle to the treatment of microbial infections globally. However, the poor penetrability to a dense extracellular polymeric substance matrix of traditional antibacterial agents limits their antibiofilm activity. Here, we show that nanoaggregates formed by self-assembly of amphiphilic borneol-guanidine-based cationic polymers (BGNx-n) possess strong antibacterial activity and can eliminate mature Staphylococcus aureus (S. aureus) biofilms. The introduction of the guanidine moiety improves the hydrophilicity and membrane penetrability of BGNx-n. The self-assembled nanoaggregates with highly localized positive charges are expected to enhance their interaction with negatively charged bacteria and biofilms. Furthermore, nanoaggregates dissociate on the surface of biofilms into smaller BGNx-n polymers, which enhances their ability to penetrate biofilms. BGNx-n nanoaggregates that exhibit superior antibacterial activity have the minimum inhibitory concentration (MIC) of 62.5 µg·mL-1 against S. aureus and eradicate mature biofilms at 4 × MIC with negligible hemolysis. Taken together, this size-variable self-assembly system offers a promising strategy for the development of effective antibiofilm agents.
Asunto(s)
Antibacterianos , Biopelículas , Canfanos , Guanidina , Pruebas de Sensibilidad Microbiana , Polímeros , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Guanidina/química , Guanidina/farmacología , Canfanos/química , Canfanos/farmacología , Polímeros/química , Polímeros/farmacología , Tensoactivos/química , Tensoactivos/farmacología , Humanos , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Dynamic covalent polymers (DCPs) that strike a balance between high performance and rapid reconfiguration have been a challenging task. For this purpose, a solution is proposed in the form of a new dynamic covalent supramolecular motif-guanidine urea structure (GUAs). GUAs contain complex and diverse chemical structures as well as unique bonding characteristics, allowing guanidine urea supramolecular polymers to demonstrate advanced physical properties. Noncovalent interaction aggregates (NIAs) have been confirmed to form in GUA-DCPs through multistage H-bonding and π-π stacking, resulting in an extremely high Young's modulus of 14 GPa, suggesting remarkable mechanical strength. Additionally, guanamine urea linkages in GUAs, a new type of dynamic covalent bond, provide resins with excellent malleability and reprocessability. Guanamine urea metathesis is validated using small molecule model compounds, and the temperature dependent infrared and rheological behavior of GUA-DCPs following the dissociative exchange mechanism. Moreover, the inherent photodynamic antibacterial properties are extensively verified by antibacterial experiments. Even after undergoing three reprocessing cycles, the antibacterial rate of GUA-DCPs remains above 99% after 24 h, highlighting their long-lasting antibacterial effectiveness. GUA-DCPs with dynamic nature, tuneable composition, and unique combination of properties make them promising candidates for various technological advancements.
Asunto(s)
Antibacterianos , Guanidina , Urea , Antibacterianos/farmacología , Antibacterianos/química , Urea/química , Urea/farmacología , Guanidina/química , Guanidina/farmacología , Polímeros/química , Polímeros/farmacología , Guanidinas/química , Guanidinas/farmacologíaRESUMEN
Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.
Asunto(s)
Cápside , Guanidina , Virus de la Hepatitis B , Guanidina/química , Guanidina/farmacología , Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/efectos de los fármacos , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Dispersión del Ángulo Pequeño , Multimerización de Proteína , Modelos Moleculares , Ensamble de Virus/efectos de los fármacos , Difracción de Rayos XRESUMEN
Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.
Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/químicaRESUMEN
Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).
Asunto(s)
Alcaloides , Dopamina , Urocordados , Animales , Alcaloides/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/síntesis química , Urocordados/química , Ratones , Dopamina/química , Dopamina/farmacología , Estructura Molecular , Guanidina/química , Guanidina/farmacología , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/síntesis química , Guanidinas/química , Guanidinas/farmacología , Guanidinas/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , HumanosRESUMEN
Glycogen, a complex branched glucose polymer, is responsible for sugar storage in blood glucose homeostasis. It comprises small ß particles bound together into composite α particles. In diabetic livers, α particles are fragile, breaking apart into smaller particles in dimethyl sulfoxide, DMSO; they are however stable in glycogen from healthy animals. We postulate that the bond between ß particles in α particles involves hydrogen bonding. Liver-glycogen fragility in normal and db/db mice (an animal model for diabetes) is compared using various hydrogen-bond breakers (DMSO, guanidine and urea) at different temperatures. The results showed different degrees of α-particle disruption. Disrupted glycogen showed changes in the mid-infra-red spectrum that are related to hydrogen bonds. While glycogen α-particles are only fragile under harsh, non-physiological conditions, these results nevertheless imply that the bonding between ß particles in α particles is different in diabetic livers compared to healthy, and is probably associated with hydrogen bonding.
Asunto(s)
Enlace de Hidrógeno , Animales , Ratones , Dimetilsulfóxido/química , Glucógeno Hepático/metabolismo , Urea/química , Guanidina/química , Guanidina/farmacología , Hígado/metabolismo , MasculinoRESUMEN
Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.
Asunto(s)
Ácido 2-Aminoadípico/análogos & derivados , Arabidopsis , Oxigenasas de Función Mixta , Guanidina/farmacología , Homoarginina , Guanidinas , Isoformas de ProteínasRESUMEN
A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.
Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-abl , Familia-src Quinasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Guanidina/farmacología , Guanidina/química , Guanidina/síntesis química , Guanidina/análogos & derivados , Células HL-60 , Leucemia/tratamiento farmacológico , Leucemia/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Relación Estructura-Actividad , Cianamida/síntesis química , Cianamida/química , Cianamida/farmacologíaRESUMEN
The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A-F (1-6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising â¼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms have been hypothesized to be toxins, while those from fireworms are reported to be defensive irritants. However, screening of the newly isolated compounds for inhibitory bioactivity showed no significant inhibition in any of the assays conducted.
Asunto(s)
Amidas , Anélidos , Guanidinas , Animales , Amidas/química , Amidas/farmacología , Amidas/aislamiento & purificación , Guanidina/química , Guanidina/farmacología , Guanidinas/química , Guanidinas/farmacología , Guanidinas/aislamiento & purificación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Anélidos/químicaRESUMEN
The progress of the pillar[5]arene chemistry allowed us to set out a new concept on application of the supramolecular assemblies to create antimicrobial films with variable surface morphologies and biological activities. Antibacterial films were derived from the substituted pillar[5]arenes containing nine pharmacophoric guanidine fragments and one thioalkyl substituent. Changing the only thioalkyl fragment in the macrocycle structure made it possible to control the biological activity of the resulting antibacterial coating. Pretreatment of the surface with aqueous solution of the amphiphilic pillar[5]arenes reduced the biofilm thickness by 56 ± 10% of Gram-positive Staphylococcus aureus in the case of the pillar[5]arene containing a thiooctyl fragment and by 52 ± 7% for the biofilm of Gram-negative Klebsiella pneumoniae in the case of pillar[5]arene containing a thiooctadecyl fragment. Meanwhile, the cytotoxicity of the synthesized macrocycles was examined at a concentration of 50 µg/mL, which was significantly lower than that of bis-guanidine-based antimicrobial preparations.
Asunto(s)
Antibacterianos , Antihipertensivos , Antibacterianos/farmacología , Biopelículas , Guanidina/farmacología , GuanidinasRESUMEN
The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.
Asunto(s)
Analgésicos Opioides , Guanidinas , Oligopéptidos , Analgésicos Opioides/farmacología , Guanidina/farmacología , Ligandos , Piperidinas/farmacologíaRESUMEN
Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.
Asunto(s)
Parásitos , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Tripanocidas/química , Trypanosoma brucei rhodesiense , Guanidina/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Guanidinas/farmacología , Metabolismo Energético , MamíferosRESUMEN
The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Biopelículas , Bacterias Gramnegativas , Bacterias Grampositivas , Guanidina/farmacología , Mamíferos , Staphylococcus aureus , Vancomicina/farmacologíaRESUMEN
Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.
Asunto(s)
Compuestos de Amonio , Antifúngicos , Animales , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Polímeros/farmacología , Histidina , Guanidina/farmacología , Lisina , Candida albicans , Imidazoles/farmacología , Arginina/farmacología , Pruebas de Sensibilidad Microbiana , MamíferosRESUMEN
The occurrence of increased antibiotic resistance has reduced the availability of drugs effective in the control of infectious diseases, especially those caused by various combinations of bacteria and/or fungi that are often associated with poorer patient outcomes. In the hunt for novel antibiotics of interest to treat polymicrobial diseases, molecules bearing guanidine moieties have recently come to the fore in designing and optimizing antimicrobial agents. Due to their remarkable antibacterial and antifungal activities, labdane diterpenes are also attracting increasing interest in antimicrobial drug discovery. In this study, six different guanidines prenylated with labdanic fragments were synthesized and evaluated for their antimicrobial properties. Assays were carried out against both non-resistant and antibiotic-resistant bacteria strains, while their possible antifungal activities have been tested on the yeast Candida albicans. Two of the synthesized compounds, namely labdan-8,13(R)-epoxy-15-oyl guanidine and labdan-8,13(S)-epoxy-15-oyl guanidine, were finally selected as the best candidates for further developments in drug discovery, due to their antimicrobial effects on both Gram-negative and Gram-positive bacterial strains, their fungicide action, and their moderate toxicity in vivo on zebrafish embryos. The study also provides insights into the structure-activity relationships of the guanidine-functionalized labdane-type diterpenoids.