Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.772
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273482

RESUMEN

Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.


Asunto(s)
Transducción de Señal , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/química , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Animales , Humanos , Dominio Catalítico , Arabidopsis/metabolismo , Dominios Proteicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química
2.
Cell Rep ; 43(8): 114589, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39110589

RESUMEN

Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Epidermis , Homeostasis , Queratinocitos , FN-kappa B , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Epidermis/metabolismo , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Dermatitis Atópica/genética , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/genética , Epitelio/metabolismo , Unión Proteica , Psoriasis/metabolismo , Psoriasis/genética , Psoriasis/patología , Proteínas de la Membrana
3.
Biochemistry ; 63(17): 2131-2140, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175413

RESUMEN

Phototransduction in vertebrate photoreceptor cells is controlled by Ca2+-dependent feedback loops involving the membrane-bound guanylate cyclase GC-E that synthesizes the second messenger guanosine-3',5'-cyclic monophosphate. Intracellular Ca2+-sensor proteins named guanylate cyclase-activating proteins (GCAPs) regulate the activity of GC-E by switching from a Ca2+-bound inhibiting state to a Ca2+-free/Mg2+-bound activating state. The gene GUCY2D encodes for human GC-E, and mutations in GUCY2D are often associated with an imbalance of Ca2+ and cGMP homeostasis causing retinal disorders. Here, we investigate the Ca2+-dependent inhibition of the constitutively active GC-E mutant V902L. The inhibition is not mediated by GCAP variants but by Ca2+ replacing Mg2+ in the catalytic center. Distant from the cyclase catalytic domain is an α-helical domain containing a highly conserved helix-turn-helix motif. Mutating the critical amino acid position 804 from leucine to proline left the principal activation mechanism intact but resulted in a lower level of catalytic efficiency. Our experimental analysis of amino acid positions in two distant GC-E domains implied an allosteric communication pathway connecting the α-helical and the cyclase catalytic domains. A computational connectivity analysis unveiled critical differences between wildtype GC-E and the mutant V902L in the allosteric network of critical amino acid positions.


Asunto(s)
Dominio Catalítico , Guanilato Ciclasa , Regulación Alostérica , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Animales , Calcio/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Humanos , Multimerización de Proteína , Magnesio/metabolismo , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
4.
Sci Adv ; 10(27): eado2365, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959302

RESUMEN

Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1ß as a key mediator, orchestrating an NF-κB-mediated IL-1ß-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1ß. With the central role of IL-1ß underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1ß antagonists in PRP.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1beta , Queratinocitos , Pitiriasis Rubra Pilaris , Humanos , Pitiriasis Rubra Pilaris/tratamiento farmacológico , Pitiriasis Rubra Pilaris/patología , Pitiriasis Rubra Pilaris/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/antagonistas & inhibidores , Femenino , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Piel/patología , Piel/metabolismo , Piel/efectos de los fármacos , Interleucina-1/antagonistas & inhibidores , Interleucina-1/metabolismo , Interleucina-1/genética , Persona de Mediana Edad , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/genética , Adulto , Transducción de Señal/efectos de los fármacos , Proteínas de la Membrana
5.
Methods Mol Biol ; 2814: 177-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954206

RESUMEN

Biochemical assays are described to analyze signal transduction by the second messenger cGMP in Dictyostelium. The methods include enzyme assays to measure the activity and regulation of cGMP synthesizing guanylyl cyclases and cGMP-degrading phosphodiesterases. In addition, several methods are described to quantify cGMP levels. The target of cGMP in Dictyostelium is the large protein GbpC that has multiple domains including a Roc domain, a kinase domain, and a cGMP-stimulated Ras-GEF domain. A cGMP-binding assay is described to detect and quantify GbpC.


Asunto(s)
GMP Cíclico , Dictyostelium , Transducción de Señal , Dictyostelium/metabolismo , Dictyostelium/genética , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
6.
Eur J Pharmacol ; 979: 176822, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047965

RESUMEN

BACKGROUND & AIMS: The treatment of cardiovascular diseases (CVD) could greatly benefit from using nitric oxide (NO) donors. This study aimed to investigate the mechanisms of action of NONO2P that contribute to the observed responses in the mesenteric artery. The hypothesis was that NONO2P would have similar pharmacological actions to sodium nitroprusside (SNP) and NO. METHODS: Male Wistar rats were euthanized to isolate the superior mesenteric artery for isometric tension recordings. NO levels were measured using the DAF-FM/DA dye, and cyclic guanosine monophosphate (cGMP) levels were determined using a cGMP-ELISA Kit. RESULTS: NONO2P presented a similar maximum efficacy to SNP. The free radical of NO (NO•) scavengers (PTIO; 100 µM and hydroxocobalamin; 30 µM) and nitroxyl anion (NO-) scavenger (L-cysteine; 3 mM) decreased relaxations promoted by NONO2P. The presence of the specific soluble guanylyl cyclase (sGC) inhibitor (ODQ; 10 µM) nearly abolished the vasorelaxation. The cGMP-dependent protein kinase (PKG) inhibition (KT5823; 1 µM) attenuated the NONO2P relaxant effect. The vasorelaxant response was significantly attenuated by blocking inward rectifying K+ channels (Kir), voltage-operated K+ channels (KV), and large conductance Ca2+-activated K+ channels (BKCa). NONO2P-induced relaxation was attenuated by cyclopiazonic acid (10 µM), indicating that sarcoplasmic reticulum Ca2+-ATPase (SERCA) activation is involved in this relaxation. Moreover, NONO2P increased NO levels in endothelial cells and cGMP production. CONCLUSIONS: NONO2P induces vasorelaxation with the same magnitude as SNP, releasing NO• and NO-. Its vasorelaxant effect involves sGC, PKG, K+ channels opening, and SERCA activation, suggesting its potential as a therapeutic option for CVD.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , GMP Cíclico , Donantes de Óxido Nítrico , Óxido Nítrico , Canales de Potasio , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal , Guanilil Ciclasa Soluble , Vasodilatación , Animales , Masculino , Vasodilatación/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ratas , Canales de Potasio/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Guanilato Ciclasa/metabolismo , Activación Enzimática/efectos de los fármacos
7.
Biochem Pharmacol ; 228: 116316, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38797267

RESUMEN

Caspase recruitment domain (CARD)-containing protein 14 (CARD14) is an intracellular protein that mediates nuclear factor-kappa B (NF-ĸB) signaling and proinflammatory gene expression in skin keratinocytes. Several hyperactivating CARD14 mutations have been associated with psoriasis and other inflammatory skin diseases. CARD14-induced NF-ĸB signaling is dependent on the formation of a CARD14-BCL10-MALT1 (CBM) signaling complex, but upstream receptors and molecular mechanisms that activate and regulate CARD14 signaling are still largely unclear. Using unbiased affinity purification and mass spectrometry (AP-MS) screening, we discover polo-like kinase 1 (PLK1) as a novel CARD14-binding protein. CARD14-PLK1 binding is independent of the CARD14 CARD domain but involves a consensus phospho-dependent PLK1-binding motif in the CARD14 linker region (LR). Expression of the psoriasis-associated CARD14(E138A) variant in human keratinocytes induces the recruitment of PLK1 to CARD14-containing signalosomes in interphase cells, but does not affect the specific location of PLK1 in mitotic cells. Finally, disruption of the PLK1-binding motif in CARD14(E138A) increases CARD14-induced proinflammatory signaling and gene expression. Together, our data identify PLK1 as a novel CARD14-binding protein and indicate a negative regulatory role for PLK1 in CARD14 signaling.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Proteínas de Ciclo Celular , Queratinocitos , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Queratinocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Unión Proteica/fisiología , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/genética , Células HEK293 , Proteínas de la Membrana
8.
JAMA Dermatol ; 160(6): 641-645, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598229

RESUMEN

Importance: There is no US Food and Drug Administration-approved treatment for pityriasis rubra pilaris (PRP), and it is common for patients to fail to experience improvement with several systemic options. Involvement of interleukin (IL) 23 suggests a potential therapeutic target. Objective: To determine whether guselkumab, an IL-23p19 inhibitor, provides clinical improvement for participants with PRP and better understand gene and protein dysregulation in PRP. Design, Setting, and Participants: This single-arm, investigator-initiated nonrandomized trial was conducted from October 2019 to August 2022 at a single-center academic university with participants from 8 states in the US. In total, 14 adults with moderate to severe PRP were enrolled; 12 completed the trial. Age-matched and sex-matched healthy controls provided skin and blood for proteomic and transcriptomic studies. The primary outcome was observed at 24 weeks, and additional follow-up occurred at 36 weeks. Intervention: Guselkumab is a fully human immunoglobulin G1 λ monoclonal antibody that selectively binds and inhibits the p19 subunit of IL-23. Subcutaneous injections were given at the US Food and Drug Administration-approved dosing schedule for psoriasis over a 24-week period. Main Outcomes and Measures: The primary outcome was the mean change in the Psoriasis Area Severity Index (PASI) score at week 24. Secondary outcomes included pruritus, Dermatology Life Quality Index score, clinical response at week 36, and association with transcriptomics and proteomics expression. Results: A per-protocol analysis was performed for the cohort of 4 female and 8 male patients who had a mean (SD) age of 56.5 (18.7) years. The mean improvement in PASI score, pruritus, and Dermatology Life Quality Index score was 61.8% (P < .001), 62.3% (P = .001), and 60.2% (P < .001), respectively. Nine participants (75%) achieved a 50% improvement in PASI. Among these clinical responders, at week 36, 8 of 9 achieved PASI75, and 6 of 9 achieved PASI90. No participants had pathogenic CARD14 gene variations. There was 1 serious adverse event that was not associated with the study drug. Proteomics and gene expression profiles identified dysregulation of a predominance of inflammatory pathways (such as T helper 17 and nuclear factor κ B) in participants with PRP who later responded well to treatment with guselkumab and stronger dysregulation of keratinocyte development pathways in individuals who did not respond to guselkumab. Conclusion and Relevance: The results of this nonrandomized trial suggest that guselkumab has efficacy in treating refractory moderate to severe adult PRP. Trial Registration: ClinicalTrials.gov Identifier: NCT03975153.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Interleucina-17 , Pitiriasis Rubra Pilaris , Transducción de Señal , Humanos , Pitiriasis Rubra Pilaris/tratamiento farmacológico , Masculino , Femenino , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Persona de Mediana Edad , Adulto , Interleucina-17/antagonistas & inhibidores , Interleucina-17/metabolismo , Transducción de Señal/efectos de los fármacos , Índice de Severidad de la Enfermedad , Interleucina-23/antagonistas & inhibidores , Resultado del Tratamiento , Subunidad p19 de la Interleucina-23/antagonistas & inhibidores , Anciano , Inyecciones Subcutáneas , Guanilato Ciclasa/metabolismo , Proteínas de la Membrana , Proteínas Adaptadoras de Señalización CARD
9.
Biochemistry ; 63(10): 1246-1256, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38662574

RESUMEN

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.


Asunto(s)
Proteínas Activadoras de la Guanilato-Ciclasa , Guanilato Ciclasa , Modelos Moleculares , Animales , Calcio/metabolismo , Activación Enzimática/genética , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/química , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , Retina/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
10.
FEBS J ; 291(10): 2273-2286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38437249

RESUMEN

Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.


Asunto(s)
Factor Natriurético Atrial , Receptores del Factor Natriurético Atrial , Receptores del Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/química , Receptores del Factor Natriurético Atrial/genética , Factor Natriurético Atrial/química , Factor Natriurético Atrial/metabolismo , Factor Natriurético Atrial/genética , Animales , Humanos , Unión Proteica , Cristalografía por Rayos X , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/genética , Secuencia de Aminoácidos , Modelos Moleculares , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Péptidos Natriuréticos/química , Péptidos Natriuréticos/metabolismo , Péptidos Natriuréticos/genética , Sitios de Unión
11.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38508664

RESUMEN

The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays a key role in the pathogenesis of pulmonary hypertension (PH). Targeted treatments include phosphodiesterase type 5 inhibitors (PDE5i) and sGC stimulators. The sGC stimulator riociguat is approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). sGC stimulators have a dual mechanism of action, enhancing the sGC response to endogenous NO and directly stimulating sGC, independent of NO. This increase in cGMP production via a dual mechanism differs from PDE5i, which protects cGMP from degradation by PDE5, rather than increasing its production. sGC stimulators may therefore have the potential to increase cGMP levels under conditions of NO depletion that could limit the effectiveness of PDE5i. Such differences in mode of action between sGC stimulators and PDE5i could lead to differences in treatment efficacy between the classes. In addition to vascular effects, sGC stimulators have the potential to reduce inflammation, angiogenesis, fibrosis and right ventricular hypertrophy and remodelling. In this review we describe the evolution of treatments targeting the NO-sGC-cGMP pathway, with a focus on PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Guanilil Ciclasa Soluble/metabolismo , Hipertensión Pulmonar/etiología , Óxido Nítrico/metabolismo , Transducción de Señal , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo
12.
PLoS One ; 19(3): e0300282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483883

RESUMEN

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Asunto(s)
Dinorfinas , Proteína Fluorescente Roja , Asta Dorsal de la Médula Espinal , Ratones , Animales , Médula Espinal/metabolismo , Ratones Transgénicos , Interneuronas/metabolismo , Células del Asta Posterior/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo
13.
Clin Exp Pharmacol Physiol ; 51(4): e13851, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452757

RESUMEN

Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.


Asunto(s)
Óxido Nítrico , Hiperplasia Prostática , Masculino , Humanos , Ratones , Animales , Óxido Nítrico/metabolismo , Guanilato Ciclasa/metabolismo , Próstata/metabolismo , Ratones Obesos , Guanosina Monofosfato/metabolismo , Azacitidina/metabolismo , Hiperplasia Prostática/metabolismo , Actinas/metabolismo , GMP Cíclico/metabolismo
14.
Nature ; 626(7999): 626-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326614

RESUMEN

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Asunto(s)
Evolución Molecular , Inmunoterapia Adoptiva , Linfoma Cutáneo de Células T , Mutación , Linfocitos T , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Citocinas/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Inmunoterapia Adoptiva/métodos , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/terapia , Fosfatidilinositol 3-Quinasas , Transducción de Señal/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante
15.
Platelets ; 35(1): 2313359, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38353233

RESUMEN

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Asunto(s)
Plaquetas , Transducción de Señal , Humanos , Ratones , Animales , Fenómenos Biomecánicos , Plaquetas/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/farmacología , Activación Plaquetaria , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Óxido Nítrico/metabolismo , Agregación Plaquetaria
16.
Bioorg Chem ; 144: 107170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335755

RESUMEN

Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.


Asunto(s)
Células Endoteliales , Guanilato Ciclasa , Humanos , Células Endoteliales/metabolismo , Activación Enzimática , Guanilato Ciclasa/metabolismo , Hemo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores , Alquilación
17.
Bull Exp Biol Med ; 176(3): 359-362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38342810

RESUMEN

Ion channels activity is regulated through soluble guanylate cyclase (sGC) and adenylate cyclase (AC) pathways, while phosphodiesterases (PDE) control the intracellular levels of cAMP and cGMP. Here we applied RNA transcriptome sequencing to study changes in the gene expression of the sGC, AC, and PDE isoforms in isolated rat ventricular cardiomyocytes under conditions of microgravity and hypergravity. Our results demonstrate that microgravity reduces the expression of sGC isoform genes, while hypergravity increases their expression. For a subset of AC isoforms, gene expression either increased or decreased under both microgravity and hypergravity conditions. The expression of genes encoding 10 PDE isoforms decreased under microgravity, but increased under hypergravity. However, under both microgravity and hypergravity, the gene expression increased for 7 PDE isoforms and decreased for 3 PDE isoforms. Overall, our findings indicate specific gravity-dependent changes in the expression of genes of isoforms associated with the studied enzymes.


Asunto(s)
Hipergravedad , Ingravidez , Ratas , Animales , Hidrolasas Diéster Fosfóricas/metabolismo , Guanilil Ciclasa Soluble , Adenilil Ciclasas/genética , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , GMP Cíclico/metabolismo
18.
J Pharmacol Exp Ther ; 390(3): 280-287, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38262743

RESUMEN

Ischemia with non-obstructive coronary arteries (INOCA), caused by coronary artery spasm, has gained increasing attention owing to the poor quality of life of impacted patients. Therapeutic options to address INOCA remain limited, and developing new therapeutic agents is desirable. Here, we examined whether soluble guanylate cyclase (sGC) activators could be beneficial in preventing coronary spasms. In organ chamber experiments with isolated canine coronary arteries, prostaglandin F2 α -induced, endothelin-1-induced, 5-hydroxytryptamine-induced, and potassium chloride-induced contractions were suppressed by the sGC activator BAY 60-2770 (0.1, 1, and 10 nM). In isolated pig coronary arteries, BAY 60-2770 (0.1, 1, and 10 nM) could prolong the cycle length of phasic contractions induced by 3,4-diaminopyridine, as well as lower the peak and bottom tension of the contraction in a concentration-dependent manner. Additionally, BAY 60-2770 (1 pM-0.1 µM) evoked a concentration-related relaxation to a greater extent in small (first diagonal branch) coronary arteries than in large (left anterior descending) coronary arteries. In vasopressin-induced angina model rats, pretreatment with BAY 60-2770 (3 µg/kg) suppressed electrocardiogram S-wave depression induced by arginine vasopressin without affecting changes in mean blood pressure and heart rate. These findings suggest that BAY 60-2770 could be valuable in preventing both large and small coronary spasms. Therefore, sGC activators could represent a novel and efficacious therapeutic option for INOCA. SIGNIFICANCE STATEMENT: The soluble guanylate cyclase (sGC) activator BAY 60-2770 exerted antispastic effects on the coronary arteries in animal vasospasm models as proof-of-concept studies. These data can help to support potential clinical development with sGC activators, suitable for human use in patients with vasospastic angina.


Asunto(s)
Benzoatos , Vasos Coronarios , Hidrocarburos Fluorados , Guanilil Ciclasa Soluble , Animales , Guanilil Ciclasa Soluble/metabolismo , Perros , Ratas , Vasos Coronarios/efectos de los fármacos , Masculino , Porcinos , Benzoatos/farmacología , Benzoatos/uso terapéutico , Hidrocarburos Fluorados/farmacología , Guanilato Ciclasa/metabolismo , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Activadores de Enzimas/farmacología , Activadores de Enzimas/uso terapéutico , Vasoconstricción/efectos de los fármacos , Compuestos de Bifenilo
19.
Biol Reprod ; 110(1): 102-115, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37774352

RESUMEN

In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.


Asunto(s)
Guanilato Ciclasa , Monoéster Fosfórico Hidrolasas , Animales , Femenino , Ratones , Ratas , Guanilato Ciclasa/metabolismo , Hormona Luteinizante/metabolismo , Meiosis , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
20.
Antioxid Redox Signal ; 40(1-3): 186-205, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742108

RESUMEN

Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.


Asunto(s)
Células Endoteliales , Óxido Nítrico , Ratones , Animales , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Cisteína/metabolismo , Guanilato Ciclasa/metabolismo , Procesamiento Proteico-Postraduccional , Homeostasis , Endotelio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...