Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; 34(10): e4576, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34155714

RESUMEN

Guanosine diphosphate mannose (GDP-Man) is the donor substrate required for mannosylation in the synthesis of glycoproteins, glycolipids and the newly discovered glycoRNA. Normal GDP-Man biosynthesis plays a crucial role in support of a variety of cellular functions, including cell recognition, cell communication and immune responses against viruses. Here, we report the detection of GDP-Man in human brain for the first time, using 31 P MRS at 7 T. The presence of GDP-Man is evidenced by the detection of a weak 31 P doublet at -10.7 ppm that can be assigned to the phosphomannosyl group (Pß) of the GDP-Man molecule. This weak but well-resolved signal lies 0.9 ppm upfield of UDP(G) Pß-multiplet from a mixture of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc. In reference to ATP (2.8 mM), the concentration of GDP-Man in human brain was estimated to be 0.02 ± 0.01 mM, about 15-fold lower than the total concentration of UDP(G) (0.30 ± 0.04, N = 17) and consistent with previous reports of UDP-Man in cells and brain tissue extracts measured by high-performance liquid chromatography. The reproducibility of the measured GDP-Man between test and 2-week retest was 21% ± 15% compared with 5% ± 4% for UDP(G) (N = 7). The measured concentrations of GDP-Man and UDP(G) are linearly correlated ([UDP(G)] = 4.3 [GDP-Man] + 0.02, with R = 0.66 and p = 0.0043), likely reflecting the effect of shared sugar precursors, which may vary among individuals in response to variation in nutritional intake and consumption. Given that GDP-Man has another set of doublet (Pα) at -8.3 ppm that overlaps with NAD(H) and UDP(G)-Pα signals, the amount of GDP-Man could potentially interfere with the deconvolution of these mixed signals in composition analysis. Importantly, this new finding may be useful in advancing our understanding of glycosylation and its role in the development of cancer, as well as infectious and neurodegenerative diseases.


Asunto(s)
Encéfalo/diagnóstico por imagen , Guanosina Difosfato Manosa/análisis , Espectroscopía de Resonancia Magnética , Adulto , Anciano , Femenino , Guanosina Difosfato Manosa/química , Humanos , Masculino , Persona de Mediana Edad , Fósforo , Reproducibilidad de los Resultados , Uridina Difosfato/metabolismo , Adulto Joven
2.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31330931

RESUMEN

GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.


Asunto(s)
Proteínas Bacterianas , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Activación Enzimática , Estabilidad de Enzimas , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Termodinámica
3.
Int J Mol Med ; 44(1): 262-272, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115488

RESUMEN

Congenital disorder of glycosylation (CDG) type Ia is a multisystem disorder that occurs due to mutations in the phosphomannomutase 2 (PMM2) gene, which encodes for an enzyme involved in the N­glycosylation pathway. Mutated PMM2 leads to the reduced conversion of mannose­6­P to mannose­1­P, which results in low concentration levels of guanosine 5'­diphospho­D­mannose (GDP­Man), a nucleotide­activated sugar essential for the construction of protein oligosaccharide chains. In the present study, an in vitro therapeutic approach was used, based on GDP­Man­loaded poly (D,L­lactide­co­glycolide) (PLGA) nanoparticles (NPs), which were used to treat CDG­Ia fibroblast cultures, thus bypassing the glycosylation pathway reaction catalysed by PMM2. To assess the degree of hypoglycosylation in vitro, the present study examined the activities of α­mannosidase, ß­glucoronidase and ß­galactosidase in defective and normal fibroblasts. GDP­Man (30 µg/ml GDP­Man PLGA NPs) was incubated for 48 h with the cells and the specific activities of α­mannosidase and ß­galactosidase were estimated at 69 and 92% compared with healthy controls. The residual activity of ß­glucoronidase increased from 6.5 to 32.5% and was significantly higher compared with that noted in the untreated CDG­Ia fibroblasts. The glycosylation process of fibroblasts was also analysed by two­dimensional electrophoresis. The results demonstrated that treatment caused the reappearance of several glycosylated proteins. The data in vitro showed that GDP­Man PLGA NPs have desirable efficacy and warrant further evaluation in a preclinical validation animal model.


Asunto(s)
Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Portadores de Fármacos , Guanosina Difosfato Manosa , Nanopartículas , Fosfotransferasas (Fosfomutasas)/deficiencia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células Cultivadas , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Fibroblastos , Glicosilación/efectos de los fármacos , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/farmacología , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología
4.
Carbohydr Res ; 452: 91-96, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29080432

RESUMEN

We have previously developed a new class of inhibitors and chemical probes for glycosyltransferases through base-modification of the sugar-nucleotide donor. The key feature of these donor analogues is the presence of an additional substituent at the nucleobase. To date, the application of this general concept has been limited to UDP-sugars and UDP-sugar-dependent glycosyltransferases. Herein, we report for the first time the application of our approach to a GDP-mannose-dependent mannosyltransferase. We have prepared four GDP-mannose derivatives with an additional substituent at either position 6 or 8 of the nucleobase. These donor analogues were recognised as donor substrates by the mannosyltransferase Kre2p from yeast, albeit with significantly lower turnover rates than the natural donor GDP-mannose. The presence of the additional substituent also redirected enzyme activity from glycosyl transfer to donor hydrolysis. Taken together, our results suggest that modification of the donor nucleobase is, in principle, a viable strategy for probe and inhibitor development against GDP-mannose-dependent GTs.


Asunto(s)
Guanosina Difosfato Manosa/metabolismo , Manosiltransferasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Guanosina Difosfato Manosa/química , Especificidad por Sustrato
5.
PLoS One ; 10(8): e0136239, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26296208

RESUMEN

In the yeast Saccharomyces cerevisiae, members of the Kre2/Mnt1 protein family have been shown to be α-1,2-mannosyltransferases or α-1,2-mannosylphosphate transferases, utilising an Mn2+-coordinated GDP-mannose as the sugar donor and a variety of mannose derivatives as acceptors. Enzymes in this family are localised to the Golgi apparatus, and have been shown to be involved in both N- and O-linked glycosylation of newly-synthesised proteins, including cell wall glycoproteins. Our knowledge of the nine proteins in this family is however very incomplete at present. Only one family member, Kre2p/Mnt1p, has been studied by structural methods, and three (Ktr4p, Ktr5p, Ktr7p) are completely uncharacterised and remain classified only as putative glycosyltransferases. Here we use in vitro enzyme activity assays to provide experimental confirmation of the predicted glycosyltransferase activity of Ktr4p. Using GDP-mannose as the donor, we observe activity towards the acceptor methyl-α-mannoside, but little or no activity towards mannose or α-1,2-mannobiose. We also present the structure of the lumenal catalytic domain of S. cerevisiae Ktr4p, determined by X-ray crystallography to a resolution of 2.2 Å, and the complex of the enzyme with GDP to 1.9 Å resolution.


Asunto(s)
Pared Celular/química , Aparato de Golgi/química , Guanosina Difosfato Manosa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Secuencias de Aminoácidos , Catálisis , Dominio Catalítico , Pared Celular/enzimología , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Aparato de Golgi/enzimología , Cinética , Mananos/química , Metilmanósidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Factores de Transcripción/genética
6.
Org Lett ; 15(21): 5528-30, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24117142

RESUMEN

An N-acetylhexosamine 1-kinase from Bifidobacterium infantis (NahK_15697), a guanosine 5'-diphosphate (GDP)-mannose pyrophosphorylase from Pyrococcus furiosus (PFManC), and an Escherichia coli inorganic pyrophosphatase (EcPpA) were used efficiently for a one-pot three-enzyme synthesis of GDP-mannose, GDP-glucose, their derivatives, and GDP-talose. This study represents the first facile and efficient enzymatic synthesis of GDP-sugars and derivatives starting from monosaccharides and derivatives.


Asunto(s)
Bifidobacterium/enzimología , Escherichia coli/química , Guanosina Difosfato Manosa/síntesis química , Monosacáridos/síntesis química , Fosfotransferasas/química , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/síntesis química , Guanosina Difosfato Manosa/química , Estructura Molecular , Monosacáridos/química , Fosfotransferasas/metabolismo
7.
PLoS One ; 7(2): e32642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22393429

RESUMEN

Leishmania spp. are a medically important group of protozoan parasites that synthesize a novel intracellular carbohydrate reserve polymer termed mannogen. Mannogen is a soluble homopolymer of ß-1,2-linked mannose residues that accumulates in the major pathogenic stages in the sandfly vector and mammalian host. While several steps in mannogen biosynthesis have been defined, none of the enzymes have been isolated or characterized. We report the development of a simple assay for the GDP-mannose-dependent ß-1,2-mannosyltransferases involved in mannogen synthesis. This assay utilizes octyl α-D-mannopyranoside to prime the formation of short mannogen oligomers up to 5 mannose residues. This assay was used to screen a focussed library of 44 GMP-triazole adducts for inhibitors. Several compounds provided effective inhibition of mannogen ß-1,2-mannosyltransferases in a cell-free membrane preparation. This assay and inhibitor compounds will be useful for dissecting the role of different mannosyltransferases in regulating de novo biosynthesis and elongation reactions in mannogen metabolism.


Asunto(s)
Antiparasitarios/farmacología , Leishmania/enzimología , Manosiltransferasas/química , Animales , Azidas/química , Sistema Libre de Células , Química Farmacéutica/métodos , Técnicas Químicas Combinatorias , Femenino , Biblioteca de Genes , Guanosina Difosfato/química , Guanosina Difosfato Manosa/química , Humanos , Concentración 50 Inhibidora , Cinética , Ligandos , Modelos Químicos , Polímeros/química , Psychodidae , Triazoles/química
8.
Parasite ; 19(1): 63-70, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22314241

RESUMEN

Leishmaniases are tropical and sub-tropical diseases for which classical drugs (i.e. antimonials) exhibit toxicity and drug resistance. Such a situation requires to find new chemical series with antileishmanial activity. This work consists in analyzing the structure of a validated target in Leishmania: the GDP-mannose pyrophosphorylase (GDP-MP), an enzyme involved in glycosylation and essential for amastigote survival. By comparing both human and L. infantum GDP-MP 3D homology models, we identified (i) a common motif of amino acids that binds to the mannose moiety of the substrate and, interestingly, (ii) a motif that is specific to the catalytic site of the parasite enzyme. This motif could then be used to design compounds that specifically inhibit the leishmanial GDP-MP, without any effect on the human homolog.


Asunto(s)
Antiprotozoarios/farmacología , Diseño de Fármacos , Leishmania infantum/enzimología , Nucleotidiltransferasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Secuencia de Consenso , Perros , Glicosilación , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Interacciones Huésped-Parásitos , Humanos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Modelos Moleculares , Conformación Molecular , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , Alineación de Secuencia , Especificidad de la Especie
9.
PLoS One ; 6(10): e25514, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065988

RESUMEN

Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars ß-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-ß-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-ß-D-virenose and LPS structure in C. burnetii.


Asunto(s)
Vías Biosintéticas , Coxiella burnetii/metabolismo , Desoxiazúcares/biosíntesis , Guanosina Difosfato Manosa/biosíntesis , Azúcares de Guanosina Difosfato/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Coxiella burnetii/enzimología , Desoxiazúcares/química , Escherichia coli/metabolismo , Guanosina Difosfato Manosa/química , Azúcares de Guanosina Difosfato/química , Humanos , Cinética , Lipopolisacáridos/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Mutación/genética , Nucleotidiltransferasas , Fosfotransferasas (Fosfomutasas)/metabolismo
10.
Proteins ; 79(8): 2455-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21638333

RESUMEN

The Nudix hydrolase superfamily, characterized by the presence of the signature sequence GX(5)EX(7)REUXEEXGU (where U is I, L, or V), is a well-studied family in which relations have been established between primary sequence and substrate specificity for many members. For example, enzymes that hydrolyze the diphosphate linkage of ADP-ribose are characterized by having a proline 15 amino acids C-terminal of the Nudix signature sequence. GDPMK is a Nudix enzyme that conserves this characteristic proline but uses GDP-mannose as the preferred substrate. By investigating the structure of the GDPMK alone, bound to magnesium, and bound to substrate, the structural basis for this divergent substrate specificity and a new rule was identified by which ADP-ribose pyrophosphatases can be distinguished from purine-DP-mannose pyrophosphatases from primary sequence alone. Kinetic and mutagenesis studies showed that GDPMK hydrolysis does not rely on a single glutamate as the catalytic base. Instead, catalysis is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. GDPMK was thought to play a role in biofilm formation because of its upregulation in response to RcsC signaling; however, GDPMK knockout strains show no defect in their capacity of forming biofilms.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Manosa/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Hidrolasas Nudix
11.
J Biol Chem ; 285(35): 27468-27476, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20573954

RESUMEN

GMP catalyzes the formation of GDP-Man, a fundamental precursor for protein glycosylation and bacterial cell wall and capsular polysaccharide biosynthesis. Crystal structures of GMP from the thermophilic bacterium Thermotoga maritima in the apo form, in complex with the substrates mannose-1-phosphate or GTP and bound with the end product GDP-Man in the presence of the essential divalent cation Mg(2+), were solved in the 2.1-2.8 A resolution range. The T. maritima GMP molecule is organized in two separate domains: a N-terminal Rossman fold-like domain and a C-terminal left-handed beta-helix domain. Two molecules associate into a dimer through a tail-to-tail arrangement of the C-terminal domains. Comparative analysis of the structures along with characterization of enzymatic parameters reveals the bases of substrate specificity of this class of sugar nucleotidyltransferases. In particular, substrate and product binding are associated with significant changes in the conformation of loop regions lining the active center and in the relative orientation of the two domains. Involvement of both the N- and C-terminal domains, coupled to the catalytic role of a bivalent metal ion, highlights the catalytic features of bacterial GMPs compared with other members of the pyrophosphorylase superfamily.


Asunto(s)
Proteínas Bacterianas/química , Cationes Bivalentes/química , Pared Celular/enzimología , Magnesio/química , Nucleotidiltransferasas/química , Thermotoga maritima/enzimología , Proteínas Bacterianas/metabolismo , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Magnesio/metabolismo , Nucleotidiltransferasas/metabolismo , Polisacáridos Bacterianos/biosíntesis , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Biochemistry ; 48(23): 5246-53, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19402712

RESUMEN

L-colitose and d-perosamine are unusual sugars found in the O-antigens of some Gram-negative bacteria such as Escherichia coli, Vibrio cholerae, and Salmonella enterica, among others. The biosynthetic pathways for these two sugars begin with the formation of GDP-mannose from d-mannose 1-phosphate and GTP followed by the subsequent dehydration and oxidation of GDP-mannose to yield GDP-4-keto-6-deoxymannose. Following the production of GDP-4-keto-6-deoxymannose, the two pathways diverge. In the case of GDP-perosamine biosynthesis, the next step involves an amination reaction at the C-4' position of the sugar, whereas in GDP-colitose production, the 3'-hydroxyl group is removed. The enzymes catalyzing these reactions are GDP-perosamine synthase and GDP-4-keto-6-deoxymannose-3-dehydratase (ColD), respectively. Both of these enzymes are pyridoxal 5'-phosphate (PLP) dependent, and their three-dimensional structures place them into the well-characterized aspartate aminotransferase superfamily. A comparison of the active site architecture of ColD from E. coli (strain 5a, type O55:H7) to that of GDP-perosamine synthase from Caulobacter crescentus CB15 suggested that only two mutations would be required to convert ColD into an aminotransferase. Here we present a combined structural and functional analysis of the ColD S187N/H188K mutant protein that, indeed, has been converted from a sugar dehydratase into an aminotransferase.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Hidroliasas/química , Mutación , Transaminasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Caulobacter crescentus/enzimología , Caulobacter crescentus/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato Manosa/análogos & derivados , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Transaminasas/metabolismo
13.
Chem Commun (Camb) ; (36): 4321-3, 2008 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-18802557

RESUMEN

GDP-2-, 3-, 4- or 6-azidomannoses can be successfully prepared from the corresponding azidomannose-1-phosphates and GTP using the enzyme GDP-Mannosepyrophosphorylase (GDP-ManPP) from Salmonella enterica and may serve as useful probes for mannosyltransferase activity.


Asunto(s)
Guanosina Difosfato Manosa/análogos & derivados , Guanosina Difosfato Manosa/síntesis química , Manosiltransferasas/química , Sondas Moleculares/química , Conformación de Carbohidratos , Activación Enzimática , Guanosina Difosfato Manosa/química , Guanosina Trifosfato/química , Manosiltransferasas/análisis , Proteínas Recombinantes/química , Salmonella enterica/enzimología
14.
J Biol Chem ; 283(1): 184-193, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17974560

RESUMEN

GDP-D-mannose 4,6-dehydratase (GMD) is a key enzyme involved in the synthesis of 6-deoxyhexoses in prokaryotes and eukaryotes. Paramecium bursaria chlorella virus-1 (PBCV-1) encodes a functional GMD, which is unique among characterized GMDs because it also has a strong stereospecific NADPH-dependent reductase activity leading to GDP-D-rhamnose formation (Tonetti, M., Zanardi, D., Gurnon, J., Fruscione, F., Armirotti, A., Damonte, G., Sturla, L., De Flora, A., and Van Etten, J.L. (2003) J. Biol. Chem. 278, 21559-21565). In the present study we characterized a recombinant GMD encoded by another chlorella virus, Acanthocystis turfacea chlorella virus 1 (ATCV-1), demonstrating that it has the expected dehydratase activity. However, it also displayed significant differences when compared with PBCV-1 GMD. In particular, ATCV-1 GMD lacks the reductase activity present in the PBCV-1 enzyme. Using recombinant PBCV-1 and ATCV-1 GMDs, we determined that the enzymatically active proteins contain tightly bound NADPH and that NADPH is essential for maintaining the oligomerization status as well as for the stabilization and function of both enzymes. Phylogenetic analysis indicates that PBCV-1 GMD is the most evolutionary diverged of the GMDs. We conclude that this high degree of divergence was the result of the selection pressures that led to the acquisition of new reductase activity to synthesize GDP-D-rhamnose while maintaining the dehydratase activity in order to continue to synthesize GDP-L-fucose.


Asunto(s)
Chlorella/virología , Hidroliasas/metabolismo , NADP/metabolismo , Phycodnaviridae/metabolismo , Proteínas Virales/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Guanosina Difosfato Fucosa/química , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Hidroliasas/química , Hidroliasas/clasificación , Estructura Molecular , Filogenia , Espectrometría de Fluorescencia/métodos , Proteínas Virales/química , Proteínas Virales/clasificación
15.
Biochemistry ; 45(38): 11290-303, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16981689

RESUMEN

GDP-mannose hydrolase catalyzes the hydrolysis with inversion of GDP-alpha-D-hexose to GDP and beta-D-hexose by nucleophilic substitution by water at C1 of the sugar. Two new crystal structures (free enzyme and enzyme-substrate complex), NMR, and site-directed mutagenesis data, combined with the structure of the enzyme-product complex reported earlier, suggest a four-stage catalytic cycle. An important loop (L6, residues 119-125) contains a ligand to the essential Mg2+ (Gln-123), the catalytic base (His-124), and three anionic residues. This loop is not ordered in the X-ray structure of the free enzyme due to dynamic disorder, as indicated by the two-dimensional 1H-15N HMQC spectrum, which shows selective exchange broadening of the imidazole nitrogen resonances of His-124 (k(ex) = 6.6 x 10(4) s(-1)). The structure of the enzyme-Mg2+-GDP-mannose substrate complex of the less active Y103F mutant shows loop L6 in an open conformation, while the structure of the enzyme-Mg2+-GDP product complex showed loop L6 in a closed, "active" conformation. 1H-15N HMQC spectra show the imidazole N epsilon of His-124 to be unprotonated, appropriate for general base catalysis. Substituting Mg2+ with the more electrophilic metal ions Mn2+ or Co2+ decreases the pKa in the pH versus kcat rate profiles, showing that deprotonation of a metal-bound water is partially rate-limiting. The H124Q mutation, which decreases kcat 10(3.4)-fold and largely abolishes its pH dependence, is rescued by the Y103F mutation, which increases kcat 23-fold and restores its pH dependence. The structural basis of the rescue is the fact that the Y103F mutation shifts the conformational equilibrium to the open form moving loop L6 out of the active site, thus permitting direct access of the specific base hydroxide from the solvent. In the proposed dissociative transition state, which occurs in the closed, active conformation of the enzyme, the partial negative charge of the GDP leaving group is compensated by the Mg2+, and by the closing of loop L2 that brings Arg-37 closer to the beta-phosphate. The development of a positive charge at mannosyl C1, as the oxocarbenium-like transition state is approached, is compensated by closing the anionic loop, L6, onto the active site, further stabilizing the transition state.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Mutación/genética , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicósido Hidrolasas/genética , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Histidina/química , Concentración de Iones de Hidrógeno , Imidazoles/química , Cinética , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Concentración Osmolar , Estructura Secundaria de Proteína , Protones , Estereoisomerismo , Especificidad por Sustrato , Temperatura , Volumetría
16.
Protein Sci ; 15(9): 2093-106, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16943443

RESUMEN

L-colitose is a 3,6-dideoxysugar found in the O-antigens of some Gram-negative bacteria such as Escherichia coli and in marine bacteria such as Pseudoalteromonas tetraodonis. The focus of this investigation, GDP-4-keto-6-deoxy-D-mannose-3-dehydratase, catalyzes the third step in colitose production, which is the removal of the hydroxyl group at C3' of GDP-4-keto-6-deoxymannose. It is an especially intriguing PLP-dependent enzyme in that it acts as both a transaminase and a dehydratase. Here we present the first X-ray structure of this enzyme isolated from E. coli Strain 5a, type O55:H7. The two subunits of the protein form a tight dimer with a buried surface area of approximately 5000 A2. This is a characteristic feature of the aspartate aminotransferase superfamily. Although the PLP-binding pocket is formed primarily by one subunit, there is a loop, delineated by Phe 240 to Glu 253 in the second subunit, that completes the active site architecture. The hydrated form of PLP was observed in one of the enzyme/cofactor complexes described here. Amino acid residues involved in anchoring the cofactor to the protein include Gly 56, Ser 57, Asp 159, Glu 162, and Ser 183 from one subunit and Asn 248 from the second monomer. In the second enzyme/cofactor complex reported, a glutamate ketimine intermediate was found trapped in the active site. Taken together, these two structures, along with previously reported biochemical data, support the role of His 188 as the active site base required for catalysis.


Asunto(s)
Proteínas de Escherichia coli/química , Guanosina Difosfato Manosa/análogos & derivados , Hidroliasas/química , Modelos Químicos , Estructura Terciaria de Proteína , Complejo Vitamínico B/química , Sitios de Unión , Coenzimas/química , Cristalografía por Rayos X , Guanosina Difosfato Manosa/química , Enlace de Hidrógeno , Modelos Moleculares , Especificidad por Sustrato
17.
J Am Chem Soc ; 127(51): 18309-20, 2005 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-16366586

RESUMEN

GDP-mannose-3',5'-epimerase (GME) from Arabidopsis thaliana catalyzes the epimerization of both the 3' and 5' positions of GDP-alpha-D-mannose to yield GDP-beta-L-galactose. Production of the C5' epimer of GDP-alpha-D-mannose, GDP-beta-L-gulose, has also been reported. The reaction occurs as part of vitamin C biosynthesis in plants. We have determined structures of complexes of GME with GDP-alpha-D-mannose, GDP-beta-L-galactose, and a mixture of GDP-beta-L-gulose with GDP-beta-L-4-keto-gulose to resolutions varying from 2.0 to 1.4 A. The enzyme has the classical extended short-chain dehydratase/reductase (SDR) fold. We have confirmed that GME establishes an equilibrium between two products, GDP-beta-L-galactose and GDP-beta-L-gulose. The reaction proceeds by C4' oxidation of GDP-alpha-D-mannose followed by epimerization of the C5' position to give GDP-beta-L-4-keto-gulose. This intermediate is either reduced to give GDP-beta-L-gulose or the C3' position is epimerized to give GDP-beta-L-4-keto-galactose, then C4' is reduced to GDP-beta-L-galactose. The combination of oxidation, epimerization, and reduction in a single active site is unusual. Structural analysis coupled to site-directed mutagenesis suggests C145 and K217 as the acid/base pair responsible for both epimerizations. On the basis of the structure of the GDP-beta-L-gulose/GDP-beta-L-4-keto-gulose co-complex, we predict that a ring flip occurs during the first epimerization and that a boat intermediate is likely for the second epimerization. Comparison of GME with other SDR enzymes known to abstract a protein alpha to the keto function of a carbohydrate identifies key common features.


Asunto(s)
Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Azúcares de Guanosina Difosfato/química , Azúcares de Guanosina Difosfato/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Sitios de Unión , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Conformación Proteica , Relación Estructura-Actividad
18.
J Inorg Biochem ; 99(12): 2257-63, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16214217

RESUMEN

In spite of the extensive use of pentavalent antimony chemotherapy, the mechanism of its anti-leishmania action is still not clear. Here, we report the interactions of Sb(V), including the clinically used drug stibogluconate, with guanosine 5'-monophosphate (5'-GMP) and guanosine 5'-diphospho-d-mannose (5'-GDP-mannose) in aqueous solution. The deprotonated hydroxyl groups (-OH) of the ribose ring are shown to be the binding site for Sb(V), probably via chelation. Both mono- and bis-adducts were formed as determined by NMR, high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS), and both of them are stable in the pH range of 4 to around 9.5. The formation of the mono-adduct (k(1)=1.67x10(-3) and 3.43x10(-3) mM(-1) min(-1) for Sb(5'-GMP) and Sb(5'-GDP-mannose), respectively, at 298 K) was 10-fold faster than that of the bis-adduct (k(2)=0.16x10(-3) and 0.21x10(-3) mM(-1) min(-1), for Sb(5'-GMP)(2) and Sb(5'-GDP-mannose)(2), respectively), and the mono-adduct was the major species in solution with the [bis-adduct]/[mono-adduct]<0.5. The reactions of stibogluconate with 5'-GMP and 5'-GDP-mannose were slower than that of antimonate under similar conditions.


Asunto(s)
Antimonio/química , Guanosina Difosfato Manosa/química , Guanosina Monofosfato/química , Animales , Antimonio/farmacología , Gluconato de Sodio Antimonio/química , Gluconato de Sodio Antimonio/farmacología , Antiprotozoarios/química , Antiprotozoarios/farmacología , Cromatografía Líquida de Alta Presión , Humanos , Técnicas In Vitro , Cinética , Leishmania/efectos de los fármacos , Leishmania/metabolismo , Leishmaniasis/tratamiento farmacológico , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
19.
Protein Expr Purif ; 42(1): 47-53, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15939292

RESUMEN

Lipoarabinomannans (LAM), especially mannose-capped LAM, abundant in the cell wall of Mycobacterium tuberculosis (Mtb) exhibit a broad spectrum of immunomodulatory functions and emerge as key virulence factors that may be relevant drug targets. The pimA gene of mycobacteria encodes a alpha-mannosyltransferase involved in the transfer reaction of the very first mannose from GDP-mannose to the carrier lipid phosphatidyl-myo-inositol, a precursor in the synthesis of LAM. PimA has been proposed to play an essential role in the growth of mycobacteria. In this study, the pimA gene from M. tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the Mtb PimA in fusion with a histidine-rich peptide on the N-terminal. The Mtb PimA was purified from the supernatant of the lysed cells under native conditions by immobilized metal affinity chromatography. The purity and molecular weight of Mtb PimA were determined by high performance liquid chromatography and matrix-assisted laser desorption ionization time-of-flight. Circular dichroism spectroscopy study on Mtb PimA showed that the protein was folded. The enzyme assays revealed that Mtb PimA showed a requirement for Mg(2+) for the activity and the K(m) and V(max) values of Mtb PimA were estimated at 18 +/- 2 microM and 0.1 +/- 0.05 nmol/min/microg, respectively. This is the first report describing cloning and expression of GDP-mannosyltransferase gene of M. tuberculosis in E. coli.


Asunto(s)
Proteínas Bacterianas/genética , Manosiltransferasas/genética , Mycobacterium tuberculosis/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Cationes Bivalentes/química , Dicroismo Circular , Escherichia coli/genética , Expresión Génica/genética , Guanosina Difosfato Manosa/química , Cinética , Manosiltransferasas/aislamiento & purificación , Manosiltransferasas/metabolismo , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
20.
J Biol Chem ; 280(26): 24539-43, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15878857

RESUMEN

Decaprenylphosphoryl-d-arabinose, the lipid donor of mycobacterial d-arabinofuranosyl residues, is synthesized from phosphoribose diphosphate rather than from a sugar nucleotide. The first committed step in the process is the transfer of a 5-phosphoribosyl residue from phosphoribose diphosphate to decaprenyl phosphate to form decaprenylphosphoryl-5-phosphoribose via a 5-phospho-alpha-d-ribose-1-diphosphate:decaprenyl-phosphate 5-phospho-ribosyltransferase. A candidate for the gene encoding this enzyme (Rv3806c) was identified in Mycobacterium tuberculosis, primarily via its homology to one of four genes responsible for d-arabinosylation of nodulation factor in Azorhizobium caulinodans. The resulting protein was predicted to contain eight or nine transmembrane domains. The gene was expressed in Escherichia coli, and membranes from the expression strain of E. coli but not from a control strain of E. coli were shown to convert phosphoribose diphosphate and decaprenyl phosphate into decaprenylphosphoryl-5-phosphoribose. Neither UDP-galactose nor GDP-mannose was active as a sugar donor. The enzyme favored polyprenyl phosphate with 50-60 carbon atoms, was unable to use C-20 polyprenyl phosphate, and used C-75 polyprenyl phosphate less efficiently than C-50 or C-60. It requires CHAPS detergent and Mg(2+) for activity. The Rv3806c gene encoding 5-phospho-alpha-d-ribose-1-diphosphate:decaprenyl-phosphate 5-phosphoribosyltransferase is known to be essential for the growth of M. tuberculosis, and the tuberculosis drug ethambutol inhibits other steps in arabinan biosynthesis. Thus the Rv3806c-encoded enzyme appears to be a good target for the development of new tuberculosis drugs.


Asunto(s)
Arabinosa/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Ribosa-Fosfato Pirofosfoquinasa/química , Ribosamonofosfatos/química , Antituberculosos/farmacología , Azorhizobium caulinodans/enzimología , Sitios de Unión , Western Blotting , Catálisis , Ácidos Cólicos/farmacología , Cromatografía en Capa Delgada , Clonación Molecular , Cartilla de ADN/química , Detergentes/farmacología , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Etambutol/farmacología , Guanosina Difosfato/química , Guanosina Difosfato Manosa/química , Concentración de Iones de Hidrógeno , Cinética , Magnesio/química , Modelos Químicos , Mutagénesis Sitio-Dirigida , Fosfatos/química , Reacción en Cadena de la Polimerasa , Polisacáridos/química , Estructura Terciaria de Proteína , Ribosa/química , Tinción con Nitrato de Plata , Especificidad por Sustrato , Factores de Tiempo , Uridina Difosfato/química , Uridina Difosfato Galactosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA