Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Nature ; 628(8009): 854-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570678

RESUMEN

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Asunto(s)
Mucosa Intestinal , Membrana Mucosa , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Antígenos CD/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Helicobacter hepaticus/inmunología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Análisis de Expresión Génica de una Sola Célula , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/citología , Transcriptoma
2.
Nat Immunol ; 25(5): 886-901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609547

RESUMEN

Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4+ T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1fl/flMaffl/flCd4Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in TH1/NK/ILC1 effector genes in LPLs, while Prdm1fl/flCd4Cre and Maffl/flCd4Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maffl/flCd4Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.


Asunto(s)
Colitis , Helicobacter hepaticus , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Proto-Oncogénicas c-maf , Animales , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-maf/genética , Colitis/inmunología , Colitis/genética , Humanos , Helicobacter hepaticus/inmunología , Infecciones por Helicobacter/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/genética , Regulación de la Expresión Génica , Modelos Animales de Enfermedad
3.
J Infect Dis ; 229(6): 1688-1701, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38416880

RESUMEN

BACKGROUND: The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS: We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS: Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS: Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.


Asunto(s)
Toxinas Bacterianas , Diferenciación Celular , Transición Epitelial-Mesenquimal , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Ratones , Humanos , Diferenciación Celular/efectos de los fármacos , Helicobacter hepaticus , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Infecciones por Helicobacter/microbiología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Femenino
4.
Helicobacter ; 29(1): e13053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332674

RESUMEN

BACKGROUND: Helicobacter species (spp.) have been detected in human bile and hepatobiliary tissue Helicobacter spp. promote gallstone formation and hepatobiliary tumors in laboratory studies, though it remains unclear whether Helicobacter spp. contribute to these cancers in humans. We used a multiplex panel to assess whether seropositivity to Helicobacter (H.) hepaticus or H. bilis proteins was associated with the development of hepatobiliary cancers in the Finnish Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, and US-based Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). METHODS: We included 62 biliary and 121 liver cancers, and 190 age-matched controls from ATBC and 74 biliary and 105 liver cancers, and 364 age- and sex-matched controls from PLCO. Seropositivity to 14 H. hepaticus and H. bilis antigens was measured using a multiplex assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were adjusted for major hepatobiliary cancer risk factors and Helicobacter pylori serostatus. RESULTS: Seropositivity to the H. bilis antigen, P167D, was associated with more than a twofold higher risk of liver cancer (OR: 2.38; 95% CI: 1.06, 5.36) and seropositivity to the H. hepaticus antigens HH0407 or HH1201, or H. bilis antigen, HRAG 01470 were associated with higher risk of biliary cancer (OR: 5.01; 95% CI: 1.53, 16.40; OR: 2.40; 95% CI: 1.00, 5.76; OR: 3.27; 95% CI: 1.14, 9.34, respectively) within PLCO. No associations for any of the H. hepaticus or H. bilis antigens were noted for liver or biliary cancers within ATBC. CONCLUSIONS: Further investigations in cohort studies should examine the role of Helicobacter spp. in the etiology of liver and biliary cancers.


Asunto(s)
Neoplasias del Sistema Biliar , Infecciones por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Hepáticas , Humanos , Masculino , Neoplasias del Sistema Biliar/epidemiología , Helicobacter hepaticus , Infecciones por Helicobacter/complicaciones , Femenino , Ensayos Clínicos como Asunto
5.
Cell Immunol ; 393-394: 104779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37935074

RESUMEN

Inflammatory bowel diseases are associated with dysregulated inflammatory immune responses in the gastrointestinal tract. We found that deficiencies of both IL-4 receptor alpha chain (IL-4Rα) and IL-10 in BALB/c mice (IL-4Rα × IL-10 KO mice) highly induced spontaneous rectal prolapse and diarrhea. These mice also exhibited severe colitis in their cecum and colon and marked elevation of serum proinflammatory cytokines including TNFα and IFNγ. These pathologies were transmittable with their cecal contents containing Helicobacter spp. Their mesenteric LN cells produced TNFα and IFNγ in response to soluble H. hepaticus antigens and high titers of H. hepaticus-specific serum IgG were also detected. These results suggested the important function of IL-4Rα signaling in controlling the intestinal inflammation and the susceptibility to intestinal microbes including H. hepaticus. Therefore, these IL-4Rα × IL-10 KO mice potentially provide the significant murine model for clarifying the causes and control of spontaneous colitis and intestinal inflammation.


Asunto(s)
Colitis , Interleucina-10 , Receptores de Interleucina-4 , Animales , Ratones , Colitis/genética , Helicobacter hepaticus/fisiología , Inflamación/patología , Interleucina-10/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-4/genética , Factor de Necrosis Tumoral alfa
6.
J Biol Chem ; 299(11): 105332, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37827288

RESUMEN

We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.


Asunto(s)
Proteínas Bacterianas , Citocromos c , Helicobacter hepaticus , Hemo , Transporte Biológico , Citocromos c/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/metabolismo
7.
Helicobacter ; 28(5): e13001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37334992

RESUMEN

BACKGROUND: It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS: BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS: We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS: These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Hidrogenasas , Masculino , Animales , Ratones , Helicobacter hepaticus/genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , Ratones Endogámicos BALB C , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/patología , Fibrosis , Estrés Oxidativo , Hidrógeno/metabolismo
8.
Mol Psychiatry ; 28(3): 1337-1350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36543925

RESUMEN

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína , Helicobacter hepaticus , Ratones Transgénicos , Dopamina , Inflamación
9.
Oncoimmunology ; 11(1): 2057399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371619

RESUMEN

Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/ß-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial-mesenchymal transition, EMT; Intestinal epithelial cells, IECs.


Asunto(s)
Células Supresoras de Origen Mieloide , Animales , Transformación Celular Neoplásica/metabolismo , Femenino , Helicobacter hepaticus , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/metabolismo
10.
Biochem Biophys Res Commun ; 598: 40-46, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35151202

RESUMEN

Hepatocytes injury caused by cytolethal distending toxin (CDT) are major events during helicobacter hepaticus (H.hepaticus) infection. Recent study showed that pre-survival autophagy was promoted against CdtB subunit induced DNA damage. In the present study, we demonstrated that inflammatory cytokines IL-6, IL-1ß, TNF-α, IFN-α, IFN-γ expression and STAT phosphorylation were promoted by CdtB. Besides, CdtB decreased cell viability while promote apoptosis in mouse liver (AML12) cells. Especially, apoptotic protein caspase-9, caspase-3 and PARP were activated while the ratio of Bcl-2/Bax was decreased after CdtB treatment. Moreover, apoptosis induced by CdtB was inhibited due to Erk/p38 MAPK signaling pathway suppression performed with SB203580 or U0126. Meanwhile, we found that CdtB increased autophagic marker levels accompanied by Akt/mTOR/P70S6K signaling pathway in a dose dependent manner. To assess the correlation between autophagy and apoptosis induced by H.hepaticus, chloroquine (CQ, 50 µM) was employed to inhibit autophagy. The result showed that inhibition of autophagy with CQ treatment promoted apoptosis induced by CdtB. Altogether, all these results suggest that CdtB triggers apoptosis via MAPK/Erk/p38 signaling pathway in caspase dependent manner, which was prevented by autophagy in AML12 cells. Collectively, our findings provide new insights into the virulence potential of CdtB on the molecular pathogenesis throughout H.hepaticus infection.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Toxinas Bacterianas/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Caspasas/genética , Caspasas/metabolismo , Línea Celular , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Helicobacter hepaticus/patogenicidad , Hepatocitos/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones
11.
Exp Anim ; 71(1): 28-35, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34456201

RESUMEN

Pathogens can affect physiological and immunological reactions in immunocompromised animals and genetically engineered mice. Specifically, murine norovirus (MNV), Helicobacter, and intestinal protozoa are prevalent in rodent laboratory facilities worldwide. In this study, microbiological test results of the soiled bedding of sentinel mice showed the prevalence of MNV (50.9%, 28/55), Helicobacter hepaticus (29.1%, 16/55), Trichomonas spp. (14.5%, 8/55), and Entamoeba spp. (32.7%, 18/55). No single infections were detected as all cases were confirmed to have complex infections with two or four pathogens. In previous studies, the success rate of the cross-fostering method was not perfect; therefore, in this study, the entire mouse strain of the SPF rodent facility was rederived using embryo transfer. For up to three years, we confirmed that the results were negative with regular health surveillance tests. Embryo transfer was, thus, determined to be an effective method for the rederivation of specific pathogen free (SPF) barrier mouse facilities. This is the report for the effectiveness of embryo transfer as an example of successful microbiological clean-up of a mouse colony with multiple infections in an entire SPF mouse facility and embryo transfer may be useful for rederiving.


Asunto(s)
Infecciones por Helicobacter , Helicobacter , Norovirus , Enfermedades de los Roedores , Animales , Transferencia de Embrión , Infecciones por Helicobacter/veterinaria , Helicobacter hepaticus , Vivienda para Animales , Ratones , Enfermedades de los Roedores/epidemiología
12.
Curr Opin Microbiol ; 65: 145-155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883389

RESUMEN

Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Helicobacter hepaticus/genética , Enfermedades Inflamatorias del Intestino/genética , Intestinos , Ratones
13.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34861182

RESUMEN

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Colon/patología , Neoplasias Colorrectales/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter hepaticus/fisiología , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células T Auxiliares Foliculares/inmunología , Estructuras Linfoides Terciarias/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
14.
Immunology ; 164(3): 476-493, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34322877

RESUMEN

In recent years, an increasing number of studies have reported that intestinal microbiota have an important effect on tumour immunity by affecting the tumour microenvironment (TME). The intestinal microbiota are closely associated with various immune cells, such as T lymphocytes, natural killer cells (NK cells) and macrophages. Some bacteria, such as Akkermansia muciniphila (A. muciniphila) and Lactobacillus reuteri (L. reuteri), have been shown to improve the effect of tumour immunity. Furthermore, microbial imbalance, such as the increased abundance of Fusobacterium nucleatum (F. nucleatum) and Helicobacter hepaticus (H. hepaticus), generally causes tumour formation and progression. In addition, some microbiota also play important roles in tumour immunotherapy, especially PD-L1-related therapies. Therefore, what is the relationship between these processes and how do they affect each other? In this review, we summarize the interactions and corresponding mechanisms among the intestinal microbiota, immune system and TME to facilitate the research and development of new targeted drugs and provide new approaches to tumour therapy.


Asunto(s)
Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis/microbiología , Disbiosis/patología , Fusobacterium nucleatum/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Helicobacter hepaticus/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/microbiología , Neoplasias/patología , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos
15.
Am J Physiol Heart Circ Physiol ; 320(5): H1887-H1902, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33710922

RESUMEN

Inflammatory bowel disease (IBD) is associated with both impaired intestinal blood flow and increased risk of cardiovascular disease, but the functional role of perivascular nerves that control vasomotor function of mesenteric arteries (MAs) perfusing the intestine during IBD is unknown. Because perivascular sensory nerves and their transmitters calcitonin gene-related peptide (CGRP) and substance P (SP) are important mediators of both vasodilation and inflammatory responses, our objective was to identify IBD-related deficits in perivascular sensory nerve function and vascular neurotransmitter signaling. In MAs from an interleukin-10 knockout (IL-10-/-) mouse model, IBD significantly impairs electrical field stimulation (EFS)-mediated sensory vasodilation and inhibition of sympathetic vasoconstriction, despite decreased sympathetic nerve density and vasoconstriction. The MA content and EFS-mediated release of both CGRP and SP are decreased with IBD, but IBD has unique effects on each transmitter. CGRP nerve density, receptor expression, hyperpolarization, and vasodilation are preserved with IBD. In contrast, SP nerve density and receptor expression are increased, and SP hyperpolarization and vasodilation are impaired with IBD. A key finding is that blockade of SP receptors restores EFS-mediated sensory vasodilation and enhanced CGRP-mediated vasodilation in MAs from IBD but not Control mice. Together, these data suggest that an aberrant role for the perivascular sensory neurotransmitter SP and its downstream signaling in MAs underlies vascular dysfunction with IBD. We propose that with IBD, SP signaling impedes CGRP-mediated sensory vasodilation, contributing to impaired blood flow. Thus, substance P and NK1 receptors may represent an important target for treating vascular dysfunction in IBD.NEW & NOTEWORTHY Our study is the first to show that IBD causes profound impairment of sensory vasodilation and inhibition of sympathetic vasoconstriction in mesenteric arteries. This occurs alongside decreased SP-containing nerve density and increased expression of NK1 receptors for SP. In contrast, CGRP dilation, nerve density, and receptor expression are unchanged. Blocking NK1 receptors restores sensory vasodilation in MAs and increases CGRP-mediated vasodilation, indicating that SP interference with CGRP signaling may underlie impaired sensory vasodilation with IBD.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Arterias Mesentéricas/inervación , Células Receptoras Sensoriales/metabolismo , Circulación Esplácnica , Sustancia P/metabolismo , Sistema Nervioso Simpático/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Helicobacter hepaticus , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/fisiopatología , Interleucina-10/deficiencia , Interleucina-10/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal , Vasoconstricción , Vasodilatación
16.
PLoS Pathog ; 17(3): e1009320, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33662035

RESUMEN

Humans are frequently exposed to bacterial genotoxins of the gut microbiota, such as colibactin and cytolethal distending toxin (CDT). In the present study, whole genome microarray-based identification of differentially expressed genes was performed in vitro on HT29 intestinal cells while following the ectopic expression of the active CdtB subunit of Helicobacter hepaticus CDT. Microarray data showed a CdtB-dependent upregulation of transcripts involved in positive regulation of autophagy concomitant with the downregulation of transcripts involved in negative regulation of autophagy. CdtB promotes the activation of autophagy in intestinal and hepatic cell lines. Experiments with cells lacking autophagy related genes, ATG5 and ATG7 infected with CDT- and colibactin-producing bacteria revealed that autophagy protects cells against the genotoxin-induced apoptotic cell death. Autophagy induction could also be associated with nucleoplasmic reticulum (NR) formation following DNA damage induced by these bacterial genotoxins. In addition, both genotoxins promote the accumulation of the autophagic receptor P62/SQSTM1 aggregates, which colocalized with foci concentrating the RNA binding protein UNR/CSDE1. Some of these aggregates were deeply invaginated in NR in distended nuclei together or in the vicinity of UNR-rich foci. Interestingly, micronuclei-like structures and some vesicles containing chromatin and γH2AX foci were found surrounded with P62/SQSTM1 and/or the autophagosome marker LC3. This study suggests that autophagy and P62/SQSTM1 regulate the abundance of micronuclei-like structures and are involved in cell survival following the DNA damage induced by CDT and colibactin. Similar effects were observed in response to DNA damaging chemotherapeutic agents, offering new insights into the context of resistance of cancer cells to therapies inducing DNA damage.


Asunto(s)
Autofagia/efectos de los fármacos , Toxinas Bacterianas/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Autofagia/fisiología , Núcleo Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Helicobacter hepaticus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Mutágenos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/genética
17.
Front Cell Infect Microbiol ; 11: 616218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777833

RESUMEN

It has been well documented that cytolethal distending toxin (CDT) from Helicobacter hepaticus (H. hepaticus), Campylobacter jejuni (C. jejuni) and other Gram-negative intestinal pathogens is linked to the inflammatory bowel disease (IBD). However, the mechanisms underlying the progression of H. hepaticus induced colitis remains unclear. In this study, male B6.129P2-IL10tm1Cgn /J mice were infected by H. hepaticus and ΔCdtB H. hepaticus for 6, 12, 18, and 24 weeks. Histopathology, H. hepaticus colonization levels, expression of inflammatory cytokines, signaling pathways, and content of NO in proximal colon were examined. We found that Cytolethal distending toxin subunit B (CdtB) deletion had no influence on colonization ability of H. hepaticus in colon of B6.129P2-IL10tm1cgn/J mice, and there was no significant difference in abundance of colonic H. hepaticus over infection duration. H. hepaticus aggravated rectocele and proximal colonic inflammation, especially at 24 WPI, while ΔCdtB H. hepaticus could not cause significant symptom. Furthermore, mRNA levels of Il-6, Tnf-α, Il-1ß, and iNOS significantly increased in the proximal colon of H. hepaticus-infected mice compared to ΔCdtB H. hepaticus infected group from 12 WPI to 24 WPI. In addition, the elevated content of NO and activated Stat3 and Jak2 in colon were observed in H. hepaticus infected mice. These data demonstrated that CdtB promote colitis development in male B6.129P2-IL10tm1Cgn /J mice by induction of inflammatory response and activation of Jak-Stat signaling pathway.


Asunto(s)
Colitis , Infecciones por Helicobacter , Animales , Toxinas Bacterianas , Helicobacter hepaticus , Interleucina-10 , Masculino , Ratones , Transducción de Señal
18.
Gut Microbes ; 13(1): 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33550886

RESUMEN

Gut microbiota and the immune system are in constant exchange shaping both host immunity and microbial communities. Here, improper immune regulation can cause inflammatory bowel disease (IBD) and colitis. Antibody therapies blocking signaling through the CD40-CD40L axis showed promising results as these molecules are deregulated in certain IBD patients. To better understand the mechanism, we used transgenic DC-LMP1/CD40 animals with a constitutive CD40-signal in CD11c+ cells, causing a lack of intestinal CD103+ dendritic cells (DCs) and failure to induce regulatory T (iTreg) cells. These mice rapidly develop spontaneous fatal colitis, accompanied by dysbiosis and increased inflammatory IL-17+IFN-γ+ Th17/Th1 and IFN-γ + Th1 cells. In the present study, we analyzed the impact of the microbiota on disease development and detected elevated IgA- and IgG-levels in sera from DC-LMP1/CD40 animals. Their serum antibodies specifically bound intestinal bacteria, and by proteome analysis, we identified a 60 kDa chaperonin GroEL (Hsp60) from Helicobacter hepaticus (Hh) as the main specific antigen targeted in the absence of iTregs. When re-derived to a different Hh-free specific-pathogen-free (SPF) microbiota, mice showed few signs of disease, normal microbiota, and no fatality. Upon recolonization of mice with Hh, the disease developed rapidly. Thus, the present work identifies GroEL/Hsp60 as a major Hh-antigen and its role in disease onset, progression, and outcome in this colitis model. Our results highlight the importance of CD103+ DC- and iTreg-mediated immune tolerance to specific pathobionts to maintain healthy intestinal balance.


Asunto(s)
Chaperonina 60/inmunología , Colitis/microbiología , Helicobacter hepaticus/patogenicidad , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Colitis/inmunología , Células Dendríticas/inmunología , Helicobacter hepaticus/inmunología , Cadenas alfa de Integrinas/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Transgénicos , Organismos Libres de Patógenos Específicos , Linfocitos T Reguladores/inmunología
19.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255175

RESUMEN

The prevalence of gastric Helicobacter pylori (Hp) infection is ~50% of the world population. However, how Hp infection influences inflammatory bowel disease in humans is not fully defined. In this study, we examined whether co-infection with Hp influenced Helicobacter hepaticus (Hh)-induced intestinal pathology in Rag2-/- mice. Rag2-/- mice of both sexes were infected with Hh, of which a subgroup was followed by infection with Hp two weeks later. Co-infected males, but not females, had significantly higher total colitis index scores in the colon at both 10 and 21 weeks post-Hh infection (WPI) and developed more severe dysplasia at 21 WPI compared with mono-Hh males. There were no significant differences in colonization levels of gastric Hp and colonic Hh between sexes or time-points. In addition, mRNA levels of colonic Il-1ß, Ifnγ, Tnfα, Il-17A, Il-17F, Il-18, and Il-23, which play important roles in the development and function of proinflammatory innate lymphoid cell groups 1 and 3, were significantly up-regulated in the dually infected males compared with mono-Hh males at 21 WPI. These data suggest that concomitant Hp infection enhances the inflammatory responses in the colon of-Hh-infected Rag2-/- males, which results in more severe colitis and dysplasia.


Asunto(s)
Colitis/genética , Proteínas de Unión al ADN/genética , Infecciones por Helicobacter/genética , Caracteres Sexuales , Animales , Coinfección/genética , Coinfección/microbiología , Colitis/microbiología , Colitis/patología , Femenino , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter hepaticus/patogenicidad , Helicobacter pylori/patogenicidad , Humanos , Masculino , Ratones , Ratones Noqueados
20.
Sci Immunol ; 5(47)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444476

RESUMEN

Mononuclear phagocytes (MNPs) are vital for maintaining intestinal homeostasis but, in response to acute microbial stimulation, can also trigger immunopathology, accelerating recruitment of Ly6Chi monocytes to the gut. The regulators that control monocyte tissue adaptation in the gut remain poorly understood. Interferon regulatory factor 5 (IRF5) is a transcription factor previously shown to play a key role in maintaining the inflammatory phenotype of macrophages. Here, we investigate the impact of IRF5 on the MNP system and physiology of the gut at homeostasis and during inflammation. We demonstrate that IRF5 deficiency has a limited impact on colon physiology at steady state but ameliorates immunopathology during Helicobacter hepaticus-induced colitis. Inhibition of IRF5 activity in MNPs phenocopies global IRF5 deficiency. Using a combination of bone marrow chimera and single-cell RNA-sequencing approaches, we examined the intrinsic role of IRF5 in controlling colonic MNP development. We demonstrate that IRF5 promotes differentiation of Ly6Chi monocytes into CD11c+ macrophages and controls the production of antimicrobial and inflammatory mediators by these cells. Thus, we identify IRF5 as a key transcriptional regulator of the colonic MNP system during intestinal inflammation.


Asunto(s)
Antígenos CD11/inmunología , Inflamación/inmunología , Factores Reguladores del Interferón/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Animales , Helicobacter hepaticus/inmunología , Inflamación/patología , Factores Reguladores del Interferón/deficiencia , Macrófagos/patología , Ratones , Ratones Noqueados , Monocitos/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...