Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.630
Filtrar
1.
Gut Microbes ; 16(1): 2350784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727219

RESUMEN

The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.


Asunto(s)
Microbioma Gastrointestinal , Hematopoyesis , Células Madre Hematopoyéticas , Hematopoyesis/fisiología , Microbioma Gastrointestinal/fisiología , Humanos , Células Madre Hematopoyéticas/microbiología , Animales , Transducción de Señal , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Tracto Gastrointestinal/microbiología , Médula Ósea/microbiología , Médula Ósea/fisiología
2.
Adv Immunol ; 161: 109-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763699

RESUMEN

Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.


Asunto(s)
Inmunidad Adaptativa , G-Cuádruplex , Hematopoyesis , Humanos , Hematopoyesis/genética , Animales , ADN/inmunología , Conformación de Ácido Nucleico
3.
Adv Immunol ; 161: 85-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763703

RESUMEN

Hematopoiesis, a process which generates blood and immune cells, changes significantly during mammalian development. Definitive hematopoiesis is marked by the emergence of long-term hematopoietic stem cells (HSCs). Here, we will focus on the post-transcriptional differences between fetal liver (FL) and adult bone marrow (ABM) HSCs. It remains unclear how or why exactly FL HSCs transition to ABM HSCs, but we aim to leverage their differences to revive an old idea: in utero HSC transplantation. Unexpectedly, the expression of certain RNA-binding proteins (RBPs) play an important role in HSC specification, and can be employed to convert or reprogram adult HSCs back to a fetal-like state. Among other features, FL HSCs have a broad differentiation capacity that includes the ability to regenerate both conventional B and T cells, as well as innate-like or unconventional lymphocytes such as B-1a and marginal zone B (MzB) cells. This chapter will focus on RNA binding proteins, namely LIN28B and IGF2BP3, that are expressed during fetal life and how they promote B-1a cell development. Furthermore, this chapter considers a potential clinical application of synthetic co-expression of LIN28B and IGF2BP3 in HSCs.


Asunto(s)
Linfocitos B , Células Madre Hematopoyéticas , Proteínas de Unión al ARN , Humanos , Animales , Proteínas de Unión al ARN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Diferenciación Celular , Hematopoyesis , Procesamiento Postranscripcional del ARN , Linfopoyesis/genética , Trasplante de Células Madre Hematopoyéticas
4.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38695592

RESUMEN

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Asunto(s)
Apoptosis , Proliferación Celular , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Rayos Ultravioleta/efectos adversos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Terapia Ultravioleta
5.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714156

RESUMEN

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Células Madre Pluripotentes , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ratones , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo
6.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773071

RESUMEN

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Epigénesis Genética , Células Madre Hematopoyéticas , Mutación , Proteínas Proto-Oncogénicas , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Hematopoyesis/genética , Ratones , Diferenciación Celular/genética
7.
Elife ; 122024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573813

RESUMEN

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Asunto(s)
Glucólisis , Fosfofructoquinasa-2 , Animales , Ratones , Adenosina Trifosfato/metabolismo , Anaerobiosis , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Fosforilación Oxidativa , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
8.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610025

RESUMEN

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Asunto(s)
Antineoplásicos , Ganoderma , Células Madre Mesenquimatosas , Animales , Ratones , Ratones Endogámicos C57BL , Docetaxel , Cisplatino , Especies Reactivas de Oxígeno , Esporas Fúngicas , Hematopoyesis , Fluorouracilo , Lípidos
9.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667319

RESUMEN

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Asunto(s)
Plaquetas , Células Madre Hematopoyéticas , Animales , Ratones , Plaquetas/citología , Plaquetas/metabolismo , Diferenciación Celular , Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Humanos
10.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636716

RESUMEN

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Asunto(s)
Fluorouracilo , Hematopoyesis , Células Madre Hematopoyéticas , Mitocondrias , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Transducción de Señal , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Mitocondrias/metabolismo , Fluorouracilo/farmacología , Hematopoyesis/genética , Óxido Nítrico/metabolismo , Regeneración , Ratones Noqueados , Médula Ósea/metabolismo , Ratones Endogámicos C57BL
11.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38688280

RESUMEN

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Asunto(s)
Neoplasias Hematológicas , Mutación , Fosfoproteínas , Factores de Empalme de ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Humanos , Animales , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Ratones , Empalme del ARN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Hematopoyesis/genética , Células HEK293 , Intrones , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652107

RESUMEN

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Diferenciación Celular/genética , Animales , Hematopoyesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Desarrollo Embrionario/genética , Transdiferenciación Celular/genética , Humanos
13.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602917

RESUMEN

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Hematopoyesis , Transducción de Señal , Comunicación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
14.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651690

RESUMEN

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Asunto(s)
Evolución Clonal , Hematopoyesis Clonal , Mutación , Evolución Clonal/genética , Humanos , Hematopoyesis Clonal/genética , Médula Ósea , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología
15.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569552

RESUMEN

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas , Proteínas de Homeodominio , Células Madre Pluripotentes , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Animales , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hematopoyesis
16.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594587

RESUMEN

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Asunto(s)
Desarrollo Embrionario , Receptores de IgG , Humanos , Desarrollo Embrionario/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Hemangioblastos/metabolismo , Hemangioblastos/citología , Diferenciación Celular , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Transcriptoma , Perfilación de la Expresión Génica , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
17.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580775

RESUMEN

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Animales , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , Hematopoyesis/fisiología , Mesonefro/embriología , Mesonefro/metabolismo , Mesonefro/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Técnicas de Cocultivo
18.
Yi Chuan ; 46(4): 319-332, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632094

RESUMEN

Granulopoiesis is a highly ordered and precisely regulated process in which hematopoietic-related transcription factors play crucial roles. These transcription factors form complex regulatory networks through interactions with their co-factors or with each other, and anomalies in these networks can lead to the onset of leukemia. While the structures and functions of dozens of transcription factors involved in this process have been extensively studied, research on the regulatory relationships between these factors remains relatively limited. PU.1 and cMYB participate in multiple stages of neutrophil development, and their abnormalities are often associated with hematologic disorders. However, the regulatory relationship between these factors in vivo and their mode of interaction remain unclear. In this study, zebrafish models with cMyb overexpression (cmybhyper) and Pu.1 deficiency (pu.1G242D/G242D) were utilized to systematically investigate the interaction between Pu.1 and cMyb during granulopoiesis through whole-mount in situ hybridization, qRT-PCR, fluorescence reporting systems, and rescue experiments. The results showed a significant increase in cmyb expression in neutrophils of the pu.1G242D/G242D mutant, while there was no apparent change in pu.1 expression in cmybhyper. Further experiments involving injection of morpholino (MO) to decrease cmyb expression in pu.1G242D/G242D mutants, followed by SB and BrdU staining to assess neutrophil quantity and proliferation, revealed that reducing cmyb expression could rescue the abnormal proliferation phenotype of neutrophils in the pu.1G242D/G242D mutant. These findings suggest that Pu.1 negatively regulates the expression of cMyb during neutrophil development. Finally, through the construction of multi-site mutation plasmids and a fluorescent reporter system, confirmed that Pu.1 directly binds to the +72 bp site in the cmyb promoter, exerting negative regulation on its expression. In conclusion, this study delineates that Pu.1 participates in neutrophil development by regulating cmyb expression. This provides new insights into the regulatory relationship between these two factors and their roles in diseases.


Asunto(s)
Neutrófilos , Proteínas Proto-Oncogénicas c-myb , Transactivadores , Pez Cebra , Animales , Hematopoyesis , Neutrófilos/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
19.
PLoS One ; 19(4): e0300623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564577

RESUMEN

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Asunto(s)
Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Trasplante de Médula Ósea , Diferenciación Celular/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Ratones Noqueados
20.
Hereditas ; 161(1): 14, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685093

RESUMEN

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS: Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS: Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.


Asunto(s)
Hematopoyesis , Nicotinamida Fosforribosiltransferasa , Pez Cebra , Animales , Pez Cebra/genética , Nicotinamida Fosforribosiltransferasa/genética , Hematopoyesis/genética , Mutación , Proteínas de Pez Cebra/genética , Fenotipo , Sistemas CRISPR-Cas , NAD/metabolismo , Técnicas de Silenciamiento del Gen , Morfolinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA