Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Biochemistry ; 63(14): 1795-1807, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38951132

RESUMEN

Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.


Asunto(s)
Membrana Celular , Hemeritrina , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hemeritrina/metabolismo , Hemeritrina/química , Hemeritrina/genética , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Aminoácidos , Secuencia Conservada , Oxígeno/metabolismo
2.
Protein J ; 42(4): 374-382, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119381

RESUMEN

Due to its ability to reversibly bind O2, alongside a relatively low redox reactivity and a limited cytotoxicity, the oxygen-carrying protein hemerythrin has been considered as an alternative to hemoglobin in preparing blood substitutes. In order to increase the hydrodynamic volume and lower antigenicity, two site-directed variants, H82C and K92C, were engineered that contained a single cysteine residue on the surface of each hemerythrin octamer for the specific attachment of polyethylene glycol (PEG). A sulfhydryl-reactive PEGylation reagent with a 51.9 Å spacer arm was used for selective cysteine derivatization. The mutants were characterized by UV-vis spectroscopy, size-exclusion chromatography, oxygen affinity, and autooxidation rate measurements. The H82C variant showed altered oligomeric behavior compared to the wild-type and was unstable in the met form. The PEGylated K92C variant is reasonably stable, displays an oxygen affinity similar to that of the wild-type, and shows an increased rate of autoxidation; the latter disadvantage may be counteracted by further chemical modifications.


Asunto(s)
Sustitutos Sanguíneos , Sustitutos Sanguíneos/química , Sustitutos Sanguíneos/metabolismo , Hemeritrina/química , Hemeritrina/metabolismo , Polietilenglicoles/química , Cisteína/química , Hemoglobinas/genética , Hemoglobinas/química , Hemoglobinas/metabolismo , Oxígeno/metabolismo
3.
J Am Chem Soc ; 144(38): 17611-17621, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36099449

RESUMEN

Hemerythrin-like proteins (HLPs) are broadly distributed across taxonomic groups and appear to play highly diverse functional roles in prokaryotes. Mycobacterial HLPs contribute to the survival of these pathogenic bacteria in mammalian macrophages, but their modes of action remain unclear. A recent crystallographic characterization of Mycobacterium kansasii HLP (Mka-HLP) revealed the unexpected presence of a tyrosine sidechain (Tyr54) near the coordination sphere of one of the two iron centers. Here, we show that Tyr54 is a true ligand to the Fe2(III) ion which, in conjunction with the presence of a µ-oxo group bridging the two iron(III), brings unique reactivity toward nitric oxide (NO). Monitoring the titration of Mka-HLP with NO by Fourier-transform infrared and electron paramagnetic resonance spectroscopies shows that both diferric and diferrous forms of Mka-HLP accumulate an uncoupled high-spin and low-spin {FeNO}7 pair. We assign the reactivity of the diferric protein to an initial radical reaction between NO and the µ-oxo bridge to form nitrite and a mixed-valent diiron center that can react further with NO. Amperometric measurements of NO consumption by Mka-HLP confirm that this reactivity can proceed at low micromolar concentrations of NO, before additional NO consumption, supporting a NO scavenging role for mycobacterial HLPs.


Asunto(s)
Hemeritrina , Óxido Nítrico , Animales , Compuestos Férricos/química , Hemeritrina/química , Hierro/química , Ligandos , Mamíferos , Nitritos , Tirosina
4.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807291

RESUMEN

Repair of Iron Center proteins (RIC) form a family of di-iron proteins that are widely spread in the microbial world. RICs contain a binuclear nonheme iron site in a four-helix bundle fold, two basic features of hemerythrin-like proteins. In this work, we review the data on microbial RICs including how their genes are regulated and contribute to the survival of pathogenic bacteria. We gathered the currently available biochemical, spectroscopic and structural data on RICs with a particular focus on Escherichia coli RIC (also known as YtfE), which remains the best-studied protein with extensive biochemical characterization. Additionally, we present novel structural data for Escherichia coli YtfE harboring a di-manganese site and the protein's affinity for this metal. The networking of protein interactions involving YtfE is also described and integrated into the proposed physiological role as an iron donor for reassembling of stress-damaged iron-sulfur centers.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hemeritrina/genética , Hemeritrina/metabolismo , Hierro/química , Proteínas Hierro-Azufre/metabolismo , Azufre/metabolismo
5.
Metallomics ; 14(3)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35150262

RESUMEN

Aerobic organisms require oxygen for respiration but must simultaneously cope with oxidative damages inherently linked with this molecule. Unicellular amoeboflagellates of the genus Naegleria, containing both free-living species and opportunistic parasites, thrive in aerobic environments. However, they are also known to maintain typical features of anaerobic organisms. Here, we describe the mechanisms of oxidative damage mitigation in Naegleria gruberi and focus on the molecular characteristics of three noncanonical proteins interacting with oxygen and its derived reactive forms. We show that this protist expresses hemerythrin, protoglobin, and an aerobic-type rubrerythrin, with spectral properties characteristic of the cofactors they bind. We provide evidence that protoglobin and hemerythrin interact with oxygen in vitro and confirm the mitochondrial localization of rubrerythrin by immunolabeling. Our proteomic analysis and immunoblotting following heavy metal treatment revealed upregulation of hemerythrin, while rotenone treatment resulted in an increase in rubrerythrin protein levels together with a vast upregulation of alternative oxidase. Our study provided new insights into the mechanisms employed by N. gruberi to cope with different types of oxidative stress and allowed us to propose specific roles for three unique and understudied proteins: hemerythrin, protoglobin, and rubrerythrin.


Asunto(s)
Naegleria , Hemeritrina/metabolismo , Naegleria/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Proteómica
6.
J Biol Chem ; 298(3): 101696, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150744

RESUMEN

The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2-) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3-). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 µM and a kcat/Km of 2.3 × 105 M-1s-1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•-) generated by macrophages to defend against bacteria, as well as to produce NO2- to adapt to hypoxic conditions.


Asunto(s)
Hemeritrina , Mycobacterium kansasii , Peroxidasas , Hemeritrina/metabolismo , Peróxido de Hidrógeno , Cinética , Mycobacterium kansasii/enzimología , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Dióxido de Nitrógeno/metabolismo , Oxidorreductasas/metabolismo
7.
mBio ; 11(5)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900801

RESUMEN

Clostridioides difficile is a major cause of diarrhea associated with antibiotherapy. After germination of C. difficile spores in the small intestine, vegetative cells are exposed to low oxygen (O2) tensions. While considered strictly anaerobic, C. difficile is able to grow in nonstrict anaerobic conditions (1 to 3% O2) and tolerates brief air exposure indicating that this bacterium harbors an arsenal of proteins involved in O2 detoxification and/or protection. Tolerance of C. difficile to low O2 tensions requires the presence of the alternative sigma factor, σB, involved in the general stress response. Among the genes positively controlled by σB, four encode proteins likely involved in O2 detoxification: two flavodiiron proteins (FdpA and FdpF) and two reverse rubrerythrins (revRbr1 and revRbr2). As previously observed for FdpF, we showed that both purified revRbr1 and revRbr2 harbor NADH-linked O2- and H2O2-reductase activities in vitro, while purified FdpA mainly acts as an O2-reductase. The growth of a fdpA mutant is affected at 0.4% O2, while inactivation of both revRbrs leads to a growth defect above 0.1% O2 O2-reductase activities of these different proteins are additive since the quadruple mutant displays a stronger phenotype when exposed to low O2 tensions compared to the triple mutants. Our results demonstrate a key role for revRbrs, FdpF, and FdpA proteins in the ability of C. difficile to grow in the presence of physiological O2 tensions such as those encountered in the colon.IMPORTANCE Although the gastrointestinal tract is regarded as mainly anoxic, low O2 tension is present in the gut and tends to increase following antibiotic-induced disruption of the host microbiota. Two decreasing O2 gradients are observed, a longitudinal one from the small to the large intestine and a second one from the intestinal epithelium toward the colon lumen. Thus, O2 concentration fluctuations within the gastrointestinal tract are a challenge for anaerobic bacteria such as C. difficile This enteropathogen has developed efficient strategies to detoxify O2 In this work, we identified reverse rubrerythrins and flavodiiron proteins as key actors for O2 tolerance in C. difficile These enzymes are responsible for the reduction of O2 protecting C. difficile vegetative cells from associated damages. Original and complex detoxification pathways involving O2-reductases are crucial in the ability of C. difficile to tolerate O2 and survive to O2 concentrations encountered in the gastrointestinal tract.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Tracto Gastrointestinal/fisiología , Oxígeno/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/patogenicidad , Tracto Gastrointestinal/microbiología , Técnicas de Inactivación de Genes , Hemeritrina/genética , Hemeritrina/metabolismo , Peróxido de Hidrógeno/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo
8.
Subcell Biochem ; 94: 251-273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189303

RESUMEN

There are three broad groups of oxygen-transport proteins found in the haemolymph (blood) of invertebrates, namely the hemocyanins, the hemerythrins and the globins. Both hemerythrins and extracellular globins are iron-based proteins that are understudied when compared to the copper-containing hemocyanins. Recent evidence suggests that hemerythrins and (giant) extracellular globins (and their linker chains) are more widely distributed than previously thought and may have biological functions beyond oxygen transport and storage. Herein, we review contemporary literature of these often-neglected proteins with respect to their structural configurations on formation and ancestral states.


Asunto(s)
Evolución Molecular , Globinas/química , Hemeritrina/química , Hemocianinas/química , Invertebrados/química , Animales
9.
FEMS Microbiol Lett ; 367(2)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32053143

RESUMEN

Numerous hemerythrins, di-iron proteins, have been identified in prokaryote genomes, but in most cases their function remains elusive. Bacterial hemerythrin homologs (bacteriohemerythrins, Bhrs) may contribute to various cellular functions, including oxygen sensing, metal binding and antibiotic resistance. It has been proposed that methanotrophic Bhrs support methane oxidation by supplying oxygen to a core enzyme, particulate methane monooxygenase. In this study, the consequences of the overexpression or deletion of the Bhr gene (bhr) in Methylomicrobiam alcaliphillum 20ZR were investigated. We found that the bhrknockout (20ZRΔbhr) displays growth kinetics and methane consumption rates similar to wild type. However, the 20ZRΔbhr accumulates elevated concentrations of acetate at aerobic conditions, indicating slowed respiration. The methanotrophic strain overproducing Bhr shows increased oxygen consumption and reduced carbon-conversion efficiency, while its methane consumption rates remain unchanged. These results suggest that the methanotrophic Bhr proteins specifically contribute to oxygen-dependent respiration, while they have minimal, if any, input of oxygen for the methane oxidation machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemeritrina/metabolismo , Metano/metabolismo , Methylococcaceae/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Hemeritrina/genética , Methylococcaceae/genética , Methylococcaceae/crecimiento & desarrollo
10.
Biochemistry ; 59(8): 983-991, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32045213

RESUMEN

The second messenger bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates numerous important physiological functions in bacteria. In this study, we identified and characterized the first dimeric, full-length, non-heme iron-bound phosphodiesterase (PDE) containing bacterial hemerythrin and HD-GYP domains (Bhr-HD-GYP). We found that the amino acid sequence encoded by the FV185_09380 gene from Ferrovum sp. PN-J185 contains an N-terminal bacterial hemerythrin domain and a C-terminal HD-GYP domain, which is characteristic of proteins with PDE activity toward c-di-GMP. Inductively coupled plasma optical emission spectroscopy analyses showed that Bhr-HD-GYP contains 4 equiv of iron atoms per subunit, suggesting both hemerythrin and HD-GYP domains have non-heme di-iron sites. A redox-dependent spectral change expected for oxo-bridged non-heme iron with carboxylate ligands was observed, and this redox interconversion was reversible. However, unlike marine invertebrate hemerythrin, which functions as an oxygen-binding protein, Bhr-HD-GYP did not form an oxygen adduct because of rapid autoxidation. The reduced ferrous iron complex of the protein catalyzed the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas the oxidized ferric iron complex had no significant activity. These results suggest that Bhr-HD-GYP is a redox and oxygen sensor enzyme that regulates c-di-GMP levels in response to changes in cellular redox status or oxygen concentration. Our study may lead to an improved understanding of the physiology of iron-oxidizing bacterium Ferrovum sp. PN-J185.


Asunto(s)
Proteínas Bacterianas/química , Hemeritrina/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Betaproteobacteria/enzimología , Catálisis , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Pruebas de Enzimas , Hemeritrina/aislamiento & purificación , Hidrólisis , Hierro/química , Oxidación-Reducción , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Dominios Proteicos , Alineación de Secuencia
11.
Biochem J ; 477(2): 567-581, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31913442

RESUMEN

Pathogenic and opportunistic mycobacteria have a distinct class of non-heme di-iron hemerythrin-like proteins (HLPs). The first to be isolated was the Rv2633c protein, which plays a role in infection by Mycobacterium tuberculosis (Mtb), but could not be crystallized. This work presents the first crystal structure of an ortholog of Rv2633c, the mycobacterial HLP from Mycobacterium kansasii (Mka). This structure differs from those of hemerythrins and other known HLPs. It consists of five α-helices, whereas all other HLP domains have four. In contrast with other HLPs, the HLP domain is not fused to an additional protein domain. The residues ligating and surrounding the di-iron site are also unique among HLPs. Notably, a tyrosine occupies the position normally held by one of the histidine ligands in hemerythrin. This structure was used to construct a homology model of Rv2633c. The structure of five α-helices is conserved and the di-iron site ligands are identical in Rv2633c. Two residues near the ends of helices in the Mka HLP structure are replaced with prolines in the Rv2633c model. This may account for structural perturbations that decrease the solubility of Rv2633c relative to Mka HLP. Clusters of residues that differ in charge or polarity between Rv2633c and Mka HLP that point outward from the helical core could reflect a specificity for potential differential interactions with other protein partners in vivo, which are related to function. The Mka HLP exhibited weaker catalase activity than Rv2633c. Evidence was obtained for the interaction of Mka HLP irons with nitric oxide.


Asunto(s)
Hemeritrina/ultraestructura , Mycobacterium kansasii/ultraestructura , Mycobacterium tuberculosis/ultraestructura , Conformación Proteica , Tuberculosis/microbiología , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Hemeritrina/química , Hemeritrina/genética , Humanos , Hierro/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mycobacterium kansasii/genética , Mycobacterium kansasii/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tuberculosis/genética , Tuberculosis/patología
12.
Proc Natl Acad Sci U S A ; 117(6): 3167-3173, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980538

RESUMEN

Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hipoxia de la Célula/genética , Aptitud Genética/genética , Hemeritrina/metabolismo , Pseudomonas aeruginosa , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Hemeritrina/genética , Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Transactivadores/genética
13.
Anal Chem ; 91(10): 6808-6814, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31038926

RESUMEN

Variable-temperature electrospray ionization combined with ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques are used to monitor structural transitions of the protein myohemerythrin from peanut worm in aqueous ammonium acetate solutions from ∼15 to 92 °C. At physiological temperatures, myohemerythrin favors a four-helix bundle motif and has a diiron oxo cofactor that binds oxygen. As the solution temperature is increased from ∼15 to 35 °C, some bound oxygen dissociates; at ∼66 °C, the cofactor dissociates to produce populations of both folded and unfolded apoprotein. At higher temperatures (∼85 °C and above), the IMS-MS spectrum indicates that the folded apoprotein dominates, and provides evidence for stabilization of the structure by formation of a non-native disulfide bond. In total, we find evidence for 18 unique forms of myohemerythrin as well as information about the structures and stabilities of these states. The high-fidelity of IMS-MS techniques provides a means of examining the stabilities of individual components of complex mixtures that are inaccessible by traditional calorimetric and spectroscopic methods.


Asunto(s)
Proteínas del Helminto/análisis , Hemeritrina/análisis , Animales , Disulfuros/química , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Hemeritrina/química , Hemeritrina/metabolismo , Espectrometría de Movilidad Iónica/métodos , Ligandos , Oxidación-Reducción , Oxígeno/metabolismo , Poliquetos/química , Desplegamiento Proteico , Espectrometría de Masa por Ionización de Electrospray/métodos , Temperatura de Transición
14.
J Microbiol ; 57(2): 138-142, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30706342

RESUMEN

Thermococcus onnurineus NA1, an obligate anaerobic hyperthermophilic archaeon, showed variable oxygen (O2) sensitivity depending on the types of substrate employed as an energy source. Unexpectedly, the culture with yeast extract as a sole energy source showed enhanced growth by 2-fold in the presence of O2. Genome-wide transcriptome analysis revealed the upregulation of several antioxidant-related genes encoding thioredoxin peroxidase (TON_0862), rubrerythrin (TON_0864), rubrerythrin-related protein (TON_0873), NAD(P)H rubredoxin oxidoreductase (TON_0865), or thioredoxin reductase (TON_1603), which can couple the detoxification of reactive oxygen species with the regeneration of NAD(P)+ from NAD(P)H. We present a plausible mechanism by which O2 serves to maintain the intracellular redox balance. This study demonstrates an unusual strategy of an obligate anaerobe underlying O2-mediated growth enhancement despite not having heme-based or cytochrome-type proteins.


Asunto(s)
Oxígeno/metabolismo , Thermococcus/enzimología , Thermococcus/crecimiento & desarrollo , Thermococcus/genética , Antioxidantes , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocromos/genética , Citocromos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Genes Arqueales/genética , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemeritrina/genética , Hemeritrina/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Rubredoxinas/genética , Rubredoxinas/metabolismo , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transcriptoma , Regulación hacia Arriba
15.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30291120

RESUMEN

"Candidatus Methanoperedens nitroreducens" is an archaeon that couples the anaerobic oxidation of methane to nitrate reduction. In natural and man-made ecosystems, this archaeon is often found at oxic-anoxic interfaces where nitrate, the product of aerobic nitrification, cooccurs with methane produced by methanogens. As such, populations of "Ca Methanoperedens nitroreducens" could be prone to regular oxygen exposure. Here, we investigated the effect of 5% (vol/vol) oxygen exposure in batch activity assays on a "Ca Methanoperedens nitroreducens" culture, enriched from an Italian paddy field. Metagenome sequencing of the DNA extracted from the enrichment culture revealed that 83% of 16S rRNA gene reads were assigned to a novel strain, "Candidatus Methanoperedens nitroreducens Verserenetto." RNA was extracted, and metatranscriptome sequencing upon oxygen exposure revealed that the active community changed, most notably in the appearance of aerobic methanotrophs. The gene expression of "Ca Methanoperedens nitroreducens" revealed that the key genes encoding enzymes of the methane oxidation and nitrate reduction pathways were downregulated. In contrast to this, we identified upregulation of glutaredoxin, thioredoxin family/like proteins, rubrerythrins, peroxiredoxins, peroxidase, alkyl hydroperoxidase, type A flavoproteins, FeS cluster assembly protein, and cysteine desulfurases, indicating the genomic potential of "Ca Methanoperedens nitroreducens Verserenetto" to counteract the oxidative damage and adapt in environments where they might be exposed to regular oxygen intrusion.IMPORTANCE "Candidatus Methanoperedens nitroreducens" is an anaerobic archaeon which couples the reduction of nitrate to the oxidation of methane. This microorganism is present in a wide range of aquatic environments and man-made ecosystems, such as paddy fields and wastewater treatment systems. In such environments, these archaea may experience regular oxygen exposure. However, "Ca Methanoperedens nitroreducens" is able to thrive under such conditions and could be applied for the simultaneous removal of dissolved methane and nitrogenous pollutants in oxygen-limited systems. To understand what machinery "Ca Methanoperedens nitroreducens" possesses to counteract the oxidative stress and survive, we characterized the response to oxygen exposure using a multi-omics approach.


Asunto(s)
Anaerobiosis/fisiología , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Methanosarcinales/metabolismo , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Anaerobiosis/genética , Proteínas Arqueales/genética , Reactores Biológicos , Hidrolasas de Éster Carboxílico/metabolismo , ADN de Archaea/aislamiento & purificación , Ecosistema , Flavoproteínas/metabolismo , Glutarredoxinas/metabolismo , Hemeritrina/metabolismo , Metagenoma , Metano/metabolismo , Methanosarcinales/clasificación , Methanosarcinales/genética , Nitratos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Peroxidasa/metabolismo , Peroxirredoxinas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Rubredoxinas/metabolismo , Análisis de Secuencia , Tiorredoxinas/metabolismo , Regulación hacia Arriba , Aguas Residuales/microbiología , Purificación del Agua
16.
BMC Res Notes ; 11(1): 290, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29751818

RESUMEN

OBJECTIVES: The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotated protein sequences in the databases motivated us to develop an improved version of "Oxypred" for identifying oxygen-binding proteins. RESULTS: In this study, we have proposed a method for identifying oxy-proteins with two different sequence similarity cutoffs 50 and 90%. A different amino acid composition based Support Vector Machines models was developed, including the evolutionary profiles in the form position-specific scoring matrix (PSSM). The fivefold cross-validation techniques were applied to evaluate the prediction performance. Also, we compared with existing methods, which shows nearly 97% recognition, but, our newly developed models were able to recognize almost 99.99 and 100% in both oxy-50 and 90% similarity models respectively. Our result shows that our approaches are faster and achieve a better prediction performance over the existing methods. The web-server Oxypred2 was developed for an alternative method for identifying oxy-proteins with more additional modules including PSSM, available at http://bioinfo.imtech.res.in/servers/muthu/oxypred2/home.html .


Asunto(s)
Evolución Biológica , Proteínas Portadoras/metabolismo , Hemoproteínas/metabolismo , Hemeritrina/metabolismo , Hemocianinas/metabolismo , Oxígeno/metabolismo , Máquina de Vectores de Soporte , Animales
17.
Int J Parasitol ; 48(9-10): 719-727, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738737

RESUMEN

Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.


Asunto(s)
Hierro/metabolismo , Naegleria/metabolismo , Anaerobiosis , Animales , Transporte Biológico , Cromatografía Liquida , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemeritrina/metabolismo , Espectrometría de Masas , Consumo de Oxígeno , Proteínas Protozoarias/genética
18.
Nat Commun ; 9(1): 1555, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29674719

RESUMEN

Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.


Asunto(s)
Bryopsida/genética , Hemeritrina/genética , Proteínas de Plantas/genética , Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/metabolismo , Briófitas/clasificación , Briófitas/genética , Briófitas/metabolismo , Bryopsida/clasificación , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Hemeritrina/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sistemas de Lectura
19.
Protein Sci ; 27(4): 848-860, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330894

RESUMEN

Hemerythrin-like proteins have generally been studied for their ability to reversibly bind oxygen through their binuclear nonheme iron centers. However, in recent years, it has become increasingly evident that some members of the hemerythrin-like superfamily also participate in many other biological processes. For instance, the binuclear nonheme iron site of YtfE, a hemerythrin-like protein involved in the repair of iron centers in Escherichia coli, catalyzes the reduction of nitric oxide to nitrous oxide, and the human F-box/LRR-repeat protein 5, which contains a hemerythrin-like domain, is involved in intracellular iron homeostasis. Furthermore, structural data on hemerythrin-like domains from two proteins of unknown function, PF0695 from Pyrococcus furiosus and NMB1532 from Neisseria meningitidis, show that the cation-binding sites, typical of hemerythrin, can be absent or be occupied by metal ions other than iron. To systematically investigate this functional and structural diversity of the hemerythrin-like superfamily, we have collected hemerythrin-like sequences from a database comprising fully sequenced proteomes and generated a cluster map based on their all-against-all pairwise sequence similarity. Our results show that the hemerythrin-like superfamily comprises a large number of protein families which can be classified into three broad groups on the basis of their cation-coordinating residues: (a) signal-transduction and oxygen-carrier hemerythrins (H-HxxxE-HxxxH-HxxxxD); (b) hemerythrin-like (H-HxxxE-H-HxxxE); and, (c) metazoan F-box proteins (H-HExxE-H-HxxxE). Interestingly, all but two hemerythrin-like families exhibit internal sequence and structural symmetry, suggesting that a duplication event may have led to the origin of the hemerythrin domain.


Asunto(s)
Evolución Molecular , Hemeritrina/química , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/metabolismo , Secuencias de Aminoácidos , Análisis por Conglomerados , Hemeritrina/metabolismo , Oxígeno/metabolismo , Filogenia , Dominios Proteicos , Homología Estructural de Proteína
20.
Int J Biol Macromol ; 107(Pt B): 1422-1427, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28986211

RESUMEN

We have previously proposed the annelid-derived protein, hemerythrin, as a viable replacement for hemoglobin in the synthesis of semi-synthetic oxygen carriers ("blood substitutes"). Here, we report the first in vivo tests for potential hemerythrin-based oxygen carriers (HrBOC), using a battery of experiments involving Wistar rats and previously tested on a series of hemoglobin-based oxygen carrier candidates (HBOC). At the concentrations tested, hemerythrin appears to behave similarly to hemoglobin - including, importantly, immunological effects. The antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.


Asunto(s)
Hemeritrina/metabolismo , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Animales , Coagulación Sanguínea , Catalasa/metabolismo , Glucosa/análisis , Iones , Hierro/metabolismo , Masculino , Estrés Oxidativo , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...