Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.126
Filtrar
1.
Mar Drugs ; 22(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39330259

RESUMEN

Heme, as an essential cofactor and source of iron for cells, holds great promise in various areas, e.g., food and medicine. In this study, the model cyanobacteria Synechocystis sp. PCC6803 was used as a host for heme synthesis. The heme synthesis pathway and its competitive pathway were modified to obtain an engineered cyanobacteria with high heme production, and the total heme production of Synechocystis sp. PCC6803 was further enhanced by the optimization of the culture conditions and the enhancement of mixotrophic ability. The co-expression of hemC, hemF, hemH, and the knockout of pcyA, a key gene in the heme catabolic pathway, resulted in a 3.83-fold increase in the heme production of the wild type, while the knockout of chlH, a gene encoding a Mg-chelatase subunit and the key enzyme of the chlorophyll synthesis pathway, resulted in a 7.96-fold increase in the heme production of the wild type; further increased to 2.05 mg/L, its heme production was 10.25-fold that of the wild type under optimized mixotrophic culture conditions. Synechocystis sp. PCC6803 has shown great potential as a cell factory for photosynthetic carbon sequestration for heme production. This study provides novel engineering targets and research directions for constructing microbial cell factories for efficient heme production.


Asunto(s)
Hemo , Ingeniería Metabólica , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Ingeniería Metabólica/métodos , Hemo/metabolismo , Hemo/biosíntesis
2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273688

RESUMEN

Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC-MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host.


Asunto(s)
Bilirrubina , Escherichia coli , Ingeniería Metabólica , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Bilirrubina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Hemo/metabolismo , Hemo/biosíntesis , Animales , Porcinos
3.
Methods Mol Biol ; 2839: 195-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008254

RESUMEN

Recombinant expression and biogenesis of cytochrome c species is a simple and efficient method for the production of holocytochrome c species, thus presenting an avenue for the study of cytochrome c or the cytochrome c biogenesis pathways responsible for heme attachment. Here, we describe a method for recombinant E. coli production of holocytochrome c utilizing the System I (CcmABCDEFGH) bacterial cytochrome c biogenesis pathway, followed by analysis of cytochrome c species by cell lysis and heme stain.


Asunto(s)
Citocromos c , Escherichia coli , Hemo , Proteínas Recombinantes , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Hemo/metabolismo , Hemo/biosíntesis
4.
Methods Mol Biol ; 2839: 213-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008255

RESUMEN

The utilization of ultra-performance liquid chromatography (UPLC) to analyze the various intermediates in the heme biosynthetic pathway is presented. The first product, ALA, was derivatized to a highly fluorescent pyrrolizine; PBG, the second intermediate, was enzymatically converted to uroporphyrinogen, and all the porphyrinogen intermediates were oxidized in acid to form fluorescent porphyrins. Heme was measured as hemin. The stable porphyrin forms of the intermediates, are then resolved and quantified by UPLC. Further details about the various methods are discussed to promote successful UPLC analyses. Method variations that may be preferable in certain situations are also presented.


Asunto(s)
Hemo , Hemo/biosíntesis , Hemo/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Ácido Aminolevulínico/metabolismo , Hemina/metabolismo , Hemina/química
5.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956406

RESUMEN

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Kluyveromyces , Kluyveromyces/genética , Edición Génica/métodos , Plásmidos/genética , Biología Sintética/métodos , Hemo/metabolismo , Hemo/genética , Hemo/biosíntesis
6.
Metab Eng ; 85: 46-60, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019249

RESUMEN

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.


Asunto(s)
Hemo , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hemo/metabolismo , Hemo/biosíntesis , Hemo/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Metab Eng ; 84: 59-68, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839038

RESUMEN

The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying Pichia pastoris P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the HEM2 gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.


Asunto(s)
Técnicas Biosensibles , Hemo , Hemoproteínas , Hemo/biosíntesis , Hemo/genética , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemoproteínas/biosíntesis , Transcriptoma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Animales , Sistemas CRISPR-Cas , Ingeniería Metabólica , Regiones Promotoras Genéticas
8.
FEBS J ; 291(16): 3737-3748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865576

RESUMEN

Hemoglobins, with heme as a cofactor, are functional proteins that have extensive applications in the fields of artificial oxygen carriers and foods. Although Saccharomyces cerevisiae is an ideal host for hemoglobin synthesis, it lacks a suitable transport system to utilize additional heme for active expression of hemoglobins, resulting in the cellular aggregation and degradation of the latter. Here, an effective heme importer, heme-responsive gene 4 (Hrg-4), was selected from six candidates through the comparison of effects on the growth rates of Δhem1 S. cerevisiae strain and the activities of various hemoglobins when supplemented with 5 mg·L-1 exogenous heme. Additionally, to counter the instability of plasmid-based expression and the metabolic burden introduced from overexpressing Hrg-4, a series of hrg-4 integrated strains were constructed and the best engineered strain with five copies of hrg-4 was chosen. We found that this engineered strain was associated with an increased binding rate of heme in monomeric leghemoglobin and multimeric human hemoglobin (76.3% and 16.5%, respectively), as well as an enhanced expression of both hemoglobins (52.8% and 17.0%, respectively). Thus, the engineered strain with improved heme uptake can be used to efficiently synthesize other heme-binding proteins and enzymes in S. cerevisiae.


Asunto(s)
Hemo , Hemoglobinas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Hemo/metabolismo , Hemo/biosíntesis , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leghemoglobina/metabolismo , Leghemoglobina/genética , Transporte Biológico
9.
Liver Int ; 44(9): 2235-2250, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888238

RESUMEN

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.


Asunto(s)
5-Aminolevulinato Sintetasa , Metabolismo Energético , Hemo , Hierro , Hemo/metabolismo , Hemo/biosíntesis , Humanos , Hierro/metabolismo , Animales , 5-Aminolevulinato Sintetasa/metabolismo , 5-Aminolevulinato Sintetasa/genética , Transporte Biológico
10.
Exp Hematol ; 137: 104252, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876253

RESUMEN

Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.


Asunto(s)
Eritropoyesis , Humanos , Eritropoyesis/genética , Animales , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/genética , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica , Hemo/metabolismo , Hemo/biosíntesis , Diferenciación Celular
11.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791308

RESUMEN

Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid ß-oxidation, autophagy, and virulence.


Asunto(s)
Fusarium , Hemo , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/genética , Hemo/biosíntesis , Hemo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrés Fisiológico , Estrés Oxidativo/efectos de los fármacos , Triazoles/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Fungicidas Industriales/farmacología , Ferroquelatasa/metabolismo , Ferroquelatasa/genética
12.
Liver Int ; 44(9): 2144-2155, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38767598

RESUMEN

We describe developments in understanding of the porphyrias associated with each step in the haem biosynthesis pathway and the role of individuals whose contributions led to major advances over the past 150 years. The first case of erythropoietic porphyria was reported in 1870, and the first with acute porphyria in 1889. Photosensitisation by porphyrin was confirmed by Meyer-Betz, who self-injected haematoporphyrin. Günther classified porphyrias into haematoporphyria acuta, acuta toxica, congenita and chronica. This was revised by Waldenström into porphyria congenita, acuta and cutanea tarda, with the latter describing those with late-onset skin lesions. Waldenström was the first to recognise porphobilinogen's association with acute porphyria, although its structure was not solved until 1953. Hans Fischer was awarded the Nobel prize in 1930 for solving the structure of porphyrins and the synthesis of haemin. After 1945, research by several groups elucidated the pathway of haem biosynthesis and its negative feedback regulation by haem. By 1961, following the work of Watson, Schmid, Rimington, Goldberg, Dean, Magnus and others, aided by the availability of modern techniques of porphyrin separation, six of the porphyrias were identified and classified as erythropoietic or hepatic. The seventh, 5-aminolaevulinate dehydratase deficiency porphyria, was described by Doss in 1979. The discovery of increased hepatic 5-aminolaevulinate synthase activity in acute porphyria led to development of haematin as a treatment for acute attacks. By 2000, all the haem biosynthesis genes were cloned, sequenced and assigned to chromosomes and disease-specific mutations identified in all inherited porphyrias. These advances have allowed definitive family studies and development of new treatments.


Asunto(s)
Genómica , Hemo , Porfirias , Humanos , 5-Aminolevulinato Sintetasa/deficiencia , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Genómica/historia , Hemo/biosíntesis , Hemo/metabolismo , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Porfirias/genética , Porfirias/historia , Porfirias/metabolismo , Porfirias/terapia
13.
Liver Int ; 44(9): 2174-2190, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38813953

RESUMEN

Porphyrias are rare, mostly inherited disorders resulting from altered activity of specific enzymes in the haem synthesis pathway that lead to accumulation of pathway intermediates. Photocutaneous symptoms occur when excess amounts of photoreactive porphyrins circulate in the blood to the skin, whereas increases in potentially neurotoxic porphyrin precursors are associated with neurovisceral symptoms. Current therapies are suboptimal and their mechanisms are not well established. As described here, emerging therapies address underlying disease mechanisms by introducing a gene, RNA or other specific molecule with the potential to cure or slow progression of the disease. Recent progress in nanotechnology and nanoscience, particularly regarding particle design and formulation, is expanding disease targets. More secure and efficient drug delivery systems have extended our toolbox for transferring specific molecules, especially into hepatocytes, and led to proof-of-concept studies in animal models. Repurposing existing drugs as molecular chaperones or haem synthesis inhibitors is also promising. This review summarizes key examples of these emerging therapeutic approaches and their application for hepatic and erythropoietic porphyrias.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Animales , Porfirias/terapia , Hemo/biosíntesis , Hemo/metabolismo , Porfirinas/uso terapéutico , Terapia Genética , Porfiria Eritropoyética/terapia , Porfiria Eritropoyética/genética , Porfirias Hepáticas/terapia , Reposicionamiento de Medicamentos
14.
Mol Biol (Mosk) ; 57(6): 1085-1097, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38062963

RESUMEN

δ-Aminolevulinic acid dehydratase (ALAD) is a key enzyme of the cytoplasmic heme biosynthesis pathway. The primary structure of the ALAD gene, the multimeric structure of the ALAD/hemB protein, and ALAD expression during the annual reproductive cycle were studied in the cold-water marine sponge Halisarca dujardinii. The results implicated the GATA-1 transcription factor and DNA methylation in regulating ALAD expression. Re-aggregation of sponge cells was accompanied by a decrease in ALAD expression and a change in the cell content of an active ALAD/hemB form. Further study of heme biosynthesis and the role of ALAD/hemB in morphogenesis of basal animals may provide new opportunities for treating pathologies in higher animals.


Asunto(s)
Poríferos , Animales , Hemo/biosíntesis , Hemo/metabolismo , Poríferos/enzimología , Poríferos/metabolismo , Porfobilinógeno Sintasa/genética , Porfobilinógeno Sintasa/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(30): e2108245119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858410

RESUMEN

Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.


Asunto(s)
Hemo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Simulación por Computador , Hemo/biosíntesis , Hemo/genética , Hemoproteínas/biosíntesis , Hemoproteínas/genética , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Sci Rep ; 12(1): 1472, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087136

RESUMEN

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Iron and heme metabolism, implicated in ventilatory control and OSA comorbidities, was associated with OSA phenotypes in recent admixture mapping and gene enrichment analyses. However, its causal contribution was unclear. In this study, we performed pathway-level transcriptional Mendelian randomization (MR) analysis to investigate the causal relationships between iron and heme related pathways and OSA. In primary analysis, we examined the expression level of four iron/heme Reactome pathways as exposures and four OSA traits as outcomes using cross-tissue cis-eQTLs from the Genotype-Tissue Expression portal and published genome-wide summary statistics of OSA. We identify a significant putative causal association between up-regulated heme biosynthesis pathway with higher sleep time percentage of hypoxemia (p = 6.14 × 10-3). This association is supported by consistency of point estimates in one-sample MR in the Multi-Ethnic Study of Atherosclerosis using high coverage DNA and RNA sequencing data generated by the Trans-Omics for Precision Medicine project. Secondary analysis for 37 additional iron/heme Gene Ontology pathways did not reveal any significant causal associations. This study suggests a causal association between increased heme biosynthesis and OSA severity.


Asunto(s)
Hemo/biosíntesis , Redes y Vías Metabólicas/genética , Apnea Obstructiva del Sueño/epidemiología , Anciano , Conjuntos de Datos como Asunto , Femenino , Predisposición Genética a la Enfermedad , Humanos , Hierro/metabolismo , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Polisomnografía , Sitios de Carácter Cuantitativo , Índice de Severidad de la Enfermedad , Apnea Obstructiva del Sueño/sangre , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/genética , Regulación hacia Arriba
17.
Am J Pathol ; 192(1): 4-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34924168

RESUMEN

Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/ß-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/ß-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The ß-catenin protein is the central player in the Wnt/ß-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/ß-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. ß-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/ß-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.


Asunto(s)
Homeostasis , Hígado/metabolismo , Vía de Señalización Wnt , Animales , Regulación de la Expresión Génica , Hemo/biosíntesis , Humanos , Vía de Señalización Wnt/genética , Xenobióticos/metabolismo
18.
Biomolecules ; 11(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944556

RESUMEN

This study hypothesizes that bacteria inhabiting shale rock affect the content of the sedimentary cobalt protoporphyrin present in it and can use it as a precursor for heme synthesis. To verify this hypothesis, we conducted qualitative and quantitative comparative analyses of cobalt protoporphyrin as well as heme, and heme iron in shale rock that were (i) inhabited by bacteria in the field, (ii) treated with bacteria in the laboratory, and with (iii) bacterial culture on synthetic cobalt protoporphyrin. Additionally, we examined the above-mentioned samples for the presence of enzymes involved in the heme biosynthesis and uptake as well as hemoproteins. We found depletion of cobalt protoporphyrin and a much higher heme concentration in the shale rock inhabited by bacteria in the field as well as the shale rock treated with bacteria in the laboratory. Similarly, we observed the accumulation of protoporphyrin in bacterial cells grown on synthetic cobalt protoporphyrin. We detected numerous hemoproteins in metaproteome of bacteria inhabited shale rock in the field and in proteomes of bacteria inhabited shale rock and synthetic cobalt protoporhyrin in the laboratory, but none of them had all the enzymes involved in the heme biosynthesis. However, proteins responsible for heme uptake, ferrochelatase and sirohydrochlorin cobaltochelatase/sirohydrochlorin cobalt-lyase were detected in all studied samples.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fósiles/microbiología , Sedimentos Geológicos/microbiología , Hemo/análisis , Protoporfirinas/análisis , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas , Medios de Cultivo/química , Ferroquelatasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Sedimentos Geológicos/química , Hemo/biosíntesis , Liasas/metabolismo , Proteómica , Protoporfirinas/biosíntesis
19.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34661520

RESUMEN

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD- mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


Asunto(s)
Hemo/biosíntesis , Hidroximetilbilano Sintasa/metabolismo , Plasmodium falciparum/enzimología , Vías Biosintéticas , Escherichia coli/genética , Prueba de Complementación Genética , Hidroximetilbilano Sintasa/genética , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinógenos/metabolismo
20.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572607

RESUMEN

In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HMGB/metabolismo , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/genética , Secuencia de Bases , Cadmio/toxicidad , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Proteínas Fúngicas/química , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HMGB/química , Hemo/biosíntesis , Peróxido de Hidrógeno/toxicidad , Kluyveromyces/efectos de los fármacos , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/genética , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...