Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609367

RESUMEN

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Asunto(s)
Hemoproteínas , Synechocystis , Hemo , Zinc , Histidina , Hemoproteínas/genética , Synechocystis/genética , Carbono , Hierro
2.
J Inorg Biochem ; 256: 112575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678912

RESUMEN

Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and H2O2 but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Proteínas de Unión al Hemo , Hemo , Hemo/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli O157/metabolismo , Escherichia coli O157/genética , Proteínas de Unión al Hemo/metabolismo , Peróxido de Hidrógeno/metabolismo , Hemoproteínas/metabolismo , Hemoproteínas/genética , Oxidación-Reducción
3.
Sci Rep ; 14(1): 5374, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438508

RESUMEN

In Gram-positive bacteria, sophisticated machineries to acquire the heme group of hemoglobin (Hb) have evolved to extract the precious iron atom contained in it. In the human pathogen Streptococcus pyogenes, the Shr protein is a key component of this machinery. Herein we present the crystal structure of hemoglobin-interacting domain 2 (HID2) of Shr bound to Hb. HID2 interacts with both, the protein and heme portions of Hb, explaining the specificity of HID2 for the heme-bound form of Hb, but not its heme-depleted form. Further mutational analysis shows little tolerance of HID2 to interfacial mutations, suggesting that its interaction surface with Hb could be a suitable candidate to develop efficient inhibitors abrogating the binding of Shr to Hb.


Asunto(s)
Hemoproteínas , Humanos , Hemoproteínas/genética , Streptococcus pyogenes/genética , Hemo , Reconocimiento en Psicología , Hierro
5.
Mol Cell Proteomics ; 22(12): 100679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979947

RESUMEN

The ability of an organism to respond to environmental changes is paramount to survival across a range of conditions. The bacterial heme nitric oxide/oxygen binding proteins (H-NOX) are a family of biofilm-regulating gas sensors that enable bacteria to respond accordingly to the cytotoxic molecule nitric oxide. By interacting with downstream signaling partners, H-NOX regulates the production of the bacterial secondary messenger cyclic diguanylate monophosphate (c-di-GMP) to influence biofilm formation. The aquatic organism Caulobacter crescentus has the propensity to attach to surfaces as part of its transition into the stalked S-phase of its life cycle. This behavior is heavily influenced by intracellular c-di-GMP and thus poses H-NOX as a potential influencer of C. crescentus surface attachment and cell cycle. By generating a strain of C. crescentus lacking hnox, our laboratory has demonstrated that this strain exhibits a considerable growth deficit, an increase in biofilm formation, and an elevation in c-di-GMP. Furthermore, in our comprehensive proteome study of 2779 proteins, 236 proteins were identified that exhibited differential expression in Δhnox C. crescentus, with 132 being downregulated and 104 being upregulated, as determined by a fold change of ≥1.5 or ≤0.66 and a p value ≤0.05. Our systematic analysis unveiled several regulated candidates including GcrA, PopA, RsaA, FtsL, DipM, FlgC, and CpaE that are associated with the regulation of the cellular division process, surface proteins, flagellum, and pili assembly. Further examination of Gene Ontology and pathways indicated that the key differences could be attributed to several metabolic processes. Taken together, our data indicate a role for the HNOX protein in C. crescentus cell cycle progression.


Asunto(s)
Caulobacter crescentus , Hemoproteínas , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Óxido Nítrico/metabolismo , GMP Cíclico/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular , Hemo/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Curr Opin Microbiol ; 76: 102396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864983

RESUMEN

Bacteria sense and respond to their environment, allowing them to maximize their survival and growth under changing conditions, such as oxygen levels. Direct oxygen-sensing proteins allow bacteria to rapidly sense concentration changes and adapt by regulating signaling pathways and/or cellular machinery. Recent work has identified roles for direct oxygen-sensing proteins in controlling second messenger levels and motility machinery, as well as effects on biofilm formation, virulence, and motility. In this review, we discuss recent progress in understanding O2-dependent regulation of cyclic di-GMP signaling and motility and highlight the emerging importance in controlling bacterial physiology and behavior.


Asunto(s)
Proteínas de Escherichia coli , Hemoproteínas , GMP Cíclico/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Sistemas de Mensajero Secundario/fisiología , Bacterias/genética , Bacterias/metabolismo , Proteínas de Escherichia coli/genética , Hemo/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
Biomolecules ; 13(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509066

RESUMEN

Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.


Asunto(s)
Hemoproteínas , Animales , Proteínas de Unión al Hemo/metabolismo , Fenómenos Biofísicos , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemo/metabolismo , Unión Proteica , Mamíferos/metabolismo
8.
J Biol Chem ; 299(6): 104742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100286

RESUMEN

The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2 is fundamental to enzymology, biotechnology, and human health. Cytochromes c' (cyts c') are a group of putative NO-binding heme proteins that fall into two families: the well-characterized four alpha helix bundle fold (cyts c'-α) and an unrelated family with a large beta-sheet fold (cyts c'-ß) resembling that of cytochromes P460. A recent structure of cyt c'-ß from Methylococcus capsulatus Bath revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas-binding site. This feature, dubbed the "Phe cap," is highly conserved within the sequences of other cyts c'-ß but is absent in their close homologs, the hydroxylamine-oxidizing cytochromes P460, although some do contain a single Phe residue. Here, we report an integrated structural, spectroscopic, and kinetic characterization of cyt c'-ß from Methylococcus capsulatus Bath complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron-rich aromatic ring face of Phe 32 toward distally bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO sensor, soluble guanylate cyclase. Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-ß, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.


Asunto(s)
Citocromos c' , Methylococcus capsulatus , Humanos , Citocromos c'/química , Gases , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Methylococcus capsulatus/química
9.
Biomolecules ; 13(1)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36671521

RESUMEN

Structure-function relationships in proteins have been one of the crucial scientific topics in recent research. Heme proteins have diverse and pivotal biological functions. Therefore, clarifying their structure-function correlation is significant to understand their functional mechanism and is informative for various fields of science. In this study, we constructed convolutional neural network models for predicting protein functions from the tertiary structures of heme-binding sites (active sites) of heme proteins to examine the structure-function correlation. As a result, we succeeded in the classification of oxygen-binding protein (OB), oxidoreductase (OR), proteins with both functions (OB-OR), and electron transport protein (ET) with high accuracy. Although the misclassification rate for OR and ET was high, the rates between OB and ET and between OB and OR were almost zero, indicating that the prediction model works well between protein groups with quite different functions. However, predicting the function of proteins modified with amino acid mutation(s) remains a challenge. Our findings indicate a structure-function correlation in the active site of heme proteins. This study is expected to be applied to the prediction of more detailed protein functions such as catalytic reactions.


Asunto(s)
Hemoproteínas , Hemoproteínas/genética , Dominio Catalítico , Redes Neurales de la Computación , Sitios de Unión , Aminoácidos
10.
Proc Natl Acad Sci U S A ; 119(30): e2108245119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858410

RESUMEN

Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.


Asunto(s)
Hemo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Simulación por Computador , Hemo/biosíntesis , Hemo/genética , Hemoproteínas/biosíntesis , Hemoproteínas/genética , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Molecules ; 27(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35268804

RESUMEN

To acquire heme, Porphyromonas gingivalis uses a hemophore-like protein (HmuY). HmuY sequesters heme from host hemoproteins or heme-binding proteins produced by cohabiting bacteria, and delivers it to the TonB-dependent outer-membrane receptor (HmuR). Although three-dimensional protein structures of members of the novel HmuY family are overall similar, significant differences exist in their heme-binding pockets. Histidines (H134 and H166) coordinating the heme iron in P. gingivalis HmuY are unique and poorly conserved in the majority of its homologs, which utilize methionines. To examine whether changes observed in the evolution of these proteins in the Bacteroidetes phylum might result in improved heme binding ability of HmuY over its homologs, we substituted histidine residues with methionine residues. Compared to the native HmuY, site-directed mutagenesis variants bound Fe(III)heme with lower ability in a similar manner to Bacteroides vulgatus Bvu and Tannerella forsythia Tfo. However, a mixed histidine-methionine couple in the HmuY was sufficient to bind Fe(II)heme, similarly to T. forsythia Tfo, Prevotella intermedia PinO and PinA. Double substitution resulted in abolished heme binding. The structure of HmuY heme-binding pocket may have been subjected to evolution, allowing for P. gingivalis to gain an advantage in heme acquisition regardless of environmental redox conditions.


Asunto(s)
Hemoproteínas , Porphyromonas gingivalis , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Hemo/química , Hemoproteínas/química , Hemoproteínas/genética , Porphyromonas gingivalis/química
12.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35026033

RESUMEN

Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme is toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold-ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems, therefore, illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.


Asunto(s)
Hemo , Hemoproteínas , Regulación de la Expresión Génica , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hierro , Factores de Transcripción/genética
13.
Biosci Rep ; 42(1)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34939646

RESUMEN

Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic-biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Óxido Nítrico/metabolismo , Factores de Virulencia/metabolismo , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Hemoproteínas/genética , Interacciones Huésped-Patógeno , Humanos , Filogenia , Transducción de Señal , Virulencia , Factores de Virulencia/genética
14.
Biochemistry ; 60(49): 3801-3812, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843212

RESUMEN

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.


Asunto(s)
Proteínas Bacterianas/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Hemo/química , Hemoproteínas/química , Paenibacillus/química , Hidrolasas Diéster Fosfóricas/química , Liasas de Fósforo-Oxígeno/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , GMP Cíclico/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Cinética , Modelos Moleculares , Oxígeno/química , Oxígeno/metabolismo , Paenibacillus/enzimología , Paenibacillus/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Microbes Environ ; 36(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34470944

RESUMEN

Root nodule symbiosis between legumes and rhizobia involves nitric oxide (NO) regulation by both the host plant and symbiotic rhizobia. However, the mechanisms by which the rhizobial control of NO affects root nodule symbiosis in Lotus japonicus are unknown. Therefore, we herein investigated the effects of enhanced NO removal by Mesorhizobium loti on symbiosis with L. japonicus. The hmp gene, which in Sinorhizobium meliloti encodes a flavohemoglobin involved in NO detoxification, was introduced into M. loti to generate a transconjugant with enhanced NO removal. The symbiotic phenotype of the transconjugant with L. japonicus was examined. The transconjugant showed delayed infection and higher nitrogenase activity in mature nodules than the wild type, whereas nodule senescence was normal. This result is in contrast to previous findings showing that enhanced NO removal in L. japonicus by class 1 phytoglobin affected nodule senescence. To evaluate differences in NO detoxification between M. loti and L. japonicus, NO localization in nodules was investigated. The enhanced expression of class 1 phytoglobin in L. japonicus reduced the amount of NO not only in infected cells, but also in vascular bundles, whereas that of hmp in M. loti reduced the amount of NO in infected cells only. This difference suggests that NO detoxification by M. loti exerts different effects in symbiosis than that by L. japonicus.


Asunto(s)
Lotus/metabolismo , Mesorhizobium/metabolismo , Óxido Nítrico/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Lotus/microbiología , Mesorhizobium/genética , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/genética
16.
Open Biol ; 11(9): 210048, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34465215

RESUMEN

Ticks, notorious blood-feeders and disease-vectors, have lost a part of their genetic complement encoding haem biosynthetic enzymes and are, therefore, dependent on the acquisition and distribution of host haem. Solute carrier protein SLC48A1, aka haem-responsive gene 1 protein (HRG1), has been implicated in haem transport, regulating the availability of intracellular haem. HRG1 transporter has been identified in both free-living and parasitic organisms ranging from unicellular kinetoplastids, nematodes, up to vertebrates. However, an HRG1 homologue in the arthropod lineage has not yet been identified. We have identified a single HRG1 homologue in the midgut transcriptome of the tick Ixodes ricinus, denoted as IrHRG, and have elucidated its role as a haem transporter. Data from haem biosynthesis-deficient yeast growth assays, systemic RNA interference and the evaluation of gallium protoporphyrin IX-mediated toxicity through tick membrane feeding clearly show that IrHRG is the bona fide tetrapyrrole transporter. We argue that during evolution, ticks profited from retaining a functional hrg1 gene in the genome because its protein product facilitates host haem escort from intracellularly digested haemoglobin, rendering haem bioavailable for a haem-dependent network of enzymes.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Sistema Digestivo/parasitología , Hemo/metabolismo , Hemoproteínas/metabolismo , Hemoglobinas/metabolismo , Ixodes/metabolismo , Infestaciones por Garrapatas/parasitología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Sistema Digestivo/metabolismo , Hemoproteínas/genética , Filogenia , Homología de Secuencia , Transcriptoma
17.
J Inorg Biochem ; 222: 111523, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217039

RESUMEN

Heme enzymes are some of the most versatile catalysts in nature. In recent years it has been found that they can also catalyze reactions for which there are no equivalents in nature. This development has been driven by the abiological catalytic reactivity reported for bio-inspired and biomimetic iron porphyrin complexes. This review focuss es on heme enzymes for catalysis of cyclopropanation reactions. The two most important approaches used to create enzymes for cyclopropanation are repurposing of heme enzymes and the various strategies used to improve these enzymes such as mutagenesis and heme replacement, and artificial heme enzymes. These strategies are introduced and compared. Moreover, lessons learned with regard to mechanism and design principles are discussed.


Asunto(s)
Ciclopropanos/síntesis química , Enzimas/química , Hemoproteínas/química , Biocatálisis , ADN/química , ADN/genética , Enzimas/genética , G-Cuádruplex , Hemo/análogos & derivados , Hemoproteínas/genética , Mutación , Ingeniería de Proteínas/métodos
18.
Infect Genet Evol ; 94: 105015, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34311096

RESUMEN

The genome of a newly identified leprosy causing bacillus Mycobacterium lepromatosis was sequenced in 2015 wherein a gene MLPM_5000 was detected whose corresponding sequences are missing in its close relative Mycobacterium leprae, the well-known causal agent of leprosy. Thus MLPM_5000 is considered to be a specific genomic locus for differentiating M. lepromatosis from M. leprae. The locus was annotated as HemN (Coproporphyrinogen III oxidase) based on the available annotations in other mycobacterial species. However, we noticed that the MLPM_5000 and its orthologues in different mycobacterial species show a much higher degree of similarity with Escherichia coli HemW (378 aa) in comparison to the E. coli HemN (457 aa). Additionally, the fourth cysteine of the characteristic CX3CX2CXC motif of the E. coli HemN is replaced by a phenylalanine in the M. lepromatosis MLPM_5000 and its mycobacterial orthologues, which is a hallmark of heme chaperone protein HemW in E. coli and other species. Phylogenetic analysis of MLPM_5000 and its mycobacterial orthologues also showed that these proteins form a divergent phylogenetic clade with the HemW proteins of other species such as Escherichia coli and Lactococcus lactis. Further, Molecular Dynamics simulation studies also predicted that the residues of conserved HNXXYW motif of the MLPM_5000 may have a role in binding to heme part of the host hemoglobin, thereby suggesting it to be a HemW instead of HemN. Altogether, this work shows that MLPM_5000 and its mycobacterial orthologues are highly unlikely to be HemN. Therefore, the current annotations of mycobacterial HemN sequences should be corrected to heme chaperone 'HemW' in various protein databases. The study not only corrects the mis-annotation but also provides a new perspective in the context of evolutionary history of M. leprae and M. lepromatosis such as lack of HemW in M. leprae may explain some of the variations in the virulence between the two pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Hemoproteínas/genética , Anotación de Secuencia Molecular , Mycobacterium/genética , Lepra/microbiología
19.
J Biol Chem ; 296: 100275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428928

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation-PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/genética , Proteínas de Unión al Hemo/genética , Hemoproteínas/genética , Pseudomonas aeruginosa/genética , Regulación Bacteriana de la Expresión Génica , Hemo/genética , Homeostasis/genética , Humanos , Hierro/metabolismo , Pseudomonas aeruginosa/patogenicidad , Shigella dysenteriae/genética , Shigella dysenteriae/patogenicidad , Virulencia/genética
20.
J Am Chem Soc ; 143(1): 252-259, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33373215

RESUMEN

De novo protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions. Moreover, formation of highly oxidizing high-valent intermediates poses design challenges that have not been previously implemented: (1) purposeful design of substrate/oxidant access to the binding site and (2) limiting deleterious oxidation of the protein scaffold. Here we report the first crystallographically characterized porphyrin-binding protein that was programmed to not only bind a synthetic Mn-porphyrin but also maintain binding site access to form high-valent oxidation states. We explicitly designed a binding site with accessibility to dioxygen units in the open coordination site of the Mn center. In solution, the protein is capable of accessing a high-valent Mn(V)-oxo species which can transfer an O atom to a thioether substrate. The crystallographic structure is within 0.6 Å of the design and indeed contained an aquo ligand with a second water molecule stabilized by hydrogen bonding to a Gln side chain in the active site, offering a structural explanation for the observed reactivity.


Asunto(s)
Hemoproteínas/química , Manganeso/química , Metaloporfirinas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Hemoproteínas/genética , Hemoproteínas/metabolismo , Oxidación-Reducción , Unión Proteica , Ingeniería de Proteínas , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA