Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.468
Filtrar
1.
Dermatol Online J ; 30(1)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762853

RESUMEN

The knife-cut sign is a distinctive manifestation of herpes simplex virus (HSV) type 1 or HSV type 2 infection that has been described in at least 10 immunocompromised patients. It appears as an extremely painful linear erosion or fissure in an intertriginous area such as the body folds beneath the breast, or within the abdomen, or in the inguinal region. Also, concurrent HSV infection at other mucocutaneous sites, or viscera, or both have been observed. The patients had medical conditions (at least 9 patients) and/or immunosuppressive drug therapy (6 patients). The diagnosis of HSV infection was confirmed by viral culture (8 patients), biopsy (4 patients), direct fluorescence antibody testing (3 patients), immunohistochemistry staining (2 patients), polymerase chain reaction (2 patients), or Western blot serologic assay (1 patient). Knife-cut sign-associated HSV infection is potentially fatal; three patients died. However, clinical improvement or complete healing occurred in the patients who received oral valacyclovir (1 patient), or intravenous acyclovir (2 patients), or intravenous acyclovir followed by foscarnet (1 patient). In summary, HSV infection associated with a positive the knife-cut sign is a potentially fatal variant of HSV infection that occurs in the intertriginous areas of immunocompromised patients and usually requires intravenous antiviral therapy.


Asunto(s)
Antivirales , Herpes Simple , Herpesvirus Humano 1 , Huésped Inmunocomprometido , Humanos , Herpes Simple/diagnóstico , Herpes Simple/tratamiento farmacológico , Persona de Mediana Edad , Femenino , Masculino , Antivirales/uso terapéutico , Anciano , Herpesvirus Humano 1/aislamiento & purificación , Adulto , Valaciclovir/uso terapéutico , Herpesvirus Humano 2/aislamiento & purificación , Aciclovir/uso terapéutico , Valina/análogos & derivados , Valina/uso terapéutico , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Foscarnet/uso terapéutico
2.
Dermatol Online J ; 30(1)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762852

RESUMEN

Herpetic geometric glossitis is a unique morphologic variant of HSV (herpes simplex virus) type 1 infection on the dorsum of the tongue that presents as an extremely painful linear central lingual fissure with a branched pattern. in the center of the tongue; there is a branched pattern of fissures that extend bilaterally from the central linear fissure. Herpetic geometric glossitis has been reported in 11 patients; 8 of these individuals were immunocompromised. Medical conditions and immunosuppressive medication treatment (7 patients) or only medical disorders (3 patients) or neither (1 patient) were present. HSV type 1 infection was diagnosed by viral culture in (7 patients), Tzanck preparation (2 patients) or clinically (2 patients). Mucocutaneous HSV infection at non-lingual locations--including the lips, labial mucosa, face and chest--were observed in 5 patients. All patients' symptoms and lesions responded to treatment with oral antiviral therapy: acyclovir (9 patients), famciclovir (1 patient) or valacyclovir (1 patient). The lingual pain and dorsal tongue fissures completely resolved completely within two to 14 days. In summary, herpetic geometric glossitis is a unique HSV type 1 infection, usually in immunocompromised patients, that occurs on the dorsal tongue and responds completely after treatment with orally administered antiviral therapy.


Asunto(s)
Antivirales , Glositis , Herpes Simple , Herpesvirus Humano 1 , Huésped Inmunocomprometido , Humanos , Glositis/tratamiento farmacológico , Glositis/virología , Persona de Mediana Edad , Femenino , Masculino , Antivirales/uso terapéutico , Herpes Simple/tratamiento farmacológico , Herpes Simple/diagnóstico , Herpesvirus Humano 1/aislamiento & purificación , Adulto , Anciano , Aciclovir/uso terapéutico , Valaciclovir/uso terapéutico , Valina/análogos & derivados , Valina/uso terapéutico , Famciclovir/uso terapéutico
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732185

RESUMEN

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/química , Chlorocebus aethiops , Humanos , Células Vero , Animales , Simplexvirus/efectos de los fármacos , Simplexvirus/fisiología , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Carbolinas/farmacología , Carbolinas/química , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Harmina/farmacología , Harmina/química , Harmina/análogos & derivados
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731826

RESUMEN

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Asunto(s)
Citocinas , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Inflamasomas , Epitelio Pigmentado de la Retina , Humanos , Inflamasomas/metabolismo , Herpesvirus Humano 1/fisiología , Citocinas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Línea Celular , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Proteínas de Unión al ADN
5.
Pharmacol Res Perspect ; 12(3): e1193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775304

RESUMEN

Aciclovir is considered the first-line treatment against Herpes simplex virus (HSV) infections in new-borns and infants. As renal excretion is the major route of elimination, in renally-impaired patients, aciclovir doses are adjusted according to the degree of impairment. However, limited attention has been given to the implications of immature renal function or dysfunction due to the viral disease itself. The aim of this investigation was to characterize the pharmacokinetics of aciclovir taking into account maturation and disease processes in the neonatal population. Pharmacokinetic data obtained from 2 previously published clinical trials (n = 28) were analyzed using a nonlinear mixed effects modeling approach. Post-menstrual age (PMA) and creatinine clearance (CLCR) were assessed as descriptors of maturation and renal function. Simulation scenarios were also implemented to illustrate the use of pharmacokinetic data to extrapolate efficacy from adults. Aciclovir pharmacokinetics was described by a one-compartment model with first-order elimination. Body weight and diagnosis (systemic infection) were statistically significant covariates on the volume of distribution, whereas body weight, CLCR and PMA had a significant effect on clearance. Median clearance varied from 0.2 to 1.0 L/h in subjects with PMA <34 or ≥34 weeks, respectively. Population estimate for volume of distribution was 1.93 L with systemic infection increasing this value by almost 3-fold (2.67 times higher). A suitable model parameterization was identified, which discriminates the effects of developmental growth, maturation, and organ function. Exposure to aciclovir was found to increase with decreasing PMA and renal function (CLCR), suggesting different dosing requirement for pre-term neonates.


Asunto(s)
Aciclovir , Antivirales , Herpes Simple , Humanos , Aciclovir/farmacocinética , Aciclovir/administración & dosificación , Recién Nacido , Antivirales/farmacocinética , Antivirales/administración & dosificación , Herpes Simple/tratamiento farmacológico , Femenino , Masculino , Modelos Biológicos , Creatinina/sangre , Relación Dosis-Respuesta a Droga , Tasa de Depuración Metabólica , Simulación por Computador
6.
BMC Med Inform Decis Mak ; 24(1): 124, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750526

RESUMEN

BACKGROUND: Spatial molecular profiling depends on accurate cell segmentation. Identification and quantitation of individual cells in dense tissues, e.g. highly inflamed tissue caused by viral infection or immune reaction, remains a challenge. METHODS: We first assess the performance of 18 deep learning-based cell segmentation models, either pre-trained or trained by us using two public image sets, on a set of immunofluorescence images stained with immune cell surface markers in skin tissue obtained during human herpes simplex virus (HSV) infection. We then further train eight of these models using up to 10,000+ training instances from the current image set. Finally, we seek to improve performance by tuning parameters of the most successful method from the previous step. RESULTS: The best model before fine-tuning achieves a mean Average Precision (mAP) of 0.516. Prediction performance improves substantially after training. The best model is the cyto model from Cellpose. After training, it achieves an mAP of 0.694; with further parameter tuning, the mAP reaches 0.711. CONCLUSION: Selecting the best model among the existing approaches and further training the model with images of interest produce the most gain in prediction performance. The performance of the resulting model compares favorably to human performance. The imperfection of the final model performance can be attributed to the moderate signal-to-noise ratio in the imageset.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Herpes Simple , Piel/diagnóstico por imagen , Biomarcadores
7.
Front Immunol ; 15: 1387503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698862

RESUMEN

Background: The manifestations of bullous pemphigoid (BP) and herpes simplex virus (HSV) infection are similar in oral mucosa, and the laboratory detection of HSV has some limitations, making it difficult to identify the HSV infection in oral lesions of BP. In addition, the treatments for BP and HSV infection have contradictory aspects. Thus, it is important to identify the HSV infection in BP patients in time. Objective: To identify the prevalence and clinical markers of HSV infection in oral lesions of BP. Methods: This prospective cross-sectional descriptive analytical study was conducted on 42 BP patients with oral lesions. A total of 32 BP patients without oral lesions and 41 healthy individuals were enrolled as control groups. Polymerase chain reaction was used to detect HSV. Clinical and laboratory characteristics of patients with HSV infection were compared with those without infection. Results: A total of 19 (45.2%) BP patients with oral lesions, none (0.0%) BP patients without oral lesions, and four (9.8%) healthy individuals were positive for HSV on oral mucosa. Among BP patients with oral lesions, the inconsistent activity between oral and skin lesions (p=0.001), absence of blister/blood blister in oral lesions (p=0.020), and pain for oral lesions (p=0.014) were more often seen in HSV-positive than HSV-negative BP patients; the dosage of glucocorticoid (p=0.023) and the accumulated glucocorticoid dosage in the last 2 weeks (2-week AGC dosage) (p=0.018) were higher in HSV-positive BP patients. Combining the above five variables as test variable, the AUC was 0.898 (p<0.001) with HSV infection as state variable in ROC analysis. The absence of blister/blood blister in oral lesions (p=0.030) and pain for oral lesions (p=0.038) were found to be independent predictors of HSV infection in multivariable analysis. A total of 14 (73.7%) HSV-positive BP patients were treated with 2-week famciclovir and the oral mucosa BPDAI scores significantly decreased (p<0.001). Conclusion: HSV infection is common in BP oral lesions. The inconsistent activity between oral and skin lesions, absence of blister in oral lesions, pain for oral lesions, higher currently used glucocorticoid dosage, and higher 2-week AGC dosage in BP patients should alert physicians to HSV infection in oral lesions and treat them with 2-week famciclovir in time.


Asunto(s)
Herpes Simple , Penfigoide Ampolloso , Simplexvirus , Humanos , Penfigoide Ampolloso/epidemiología , Penfigoide Ampolloso/tratamiento farmacológico , Penfigoide Ampolloso/diagnóstico , Masculino , Femenino , Anciano , Prevalencia , Estudios Transversales , Persona de Mediana Edad , Estudios Prospectivos , Simplexvirus/aislamiento & purificación , Mucosa Bucal/patología , Mucosa Bucal/virología , Anciano de 80 o más Años , Biomarcadores , Enfermedades de la Boca/epidemiología , Enfermedades de la Boca/virología , Adulto
8.
Nat Commun ; 15(1): 4018, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740820

RESUMEN

Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.


Asunto(s)
Dependovirus , Edición Génica , Herpes Simple , Herpesvirus Humano 1 , Carga Viral , Esparcimiento de Virus , Animales , Edición Génica/métodos , Femenino , Dependovirus/genética , Ratones , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Herpes Simple/genética , Herpes Simple/virología , Herpes Simple/terapia , Modelos Animales de Enfermedad , Latencia del Virus/genética , Humanos , Vectores Genéticos/genética , Células Vero , Terapia Genética/métodos , Herpes Genital/terapia , Herpes Genital/virología , ADN Viral/genética
9.
Alzheimers Res Ther ; 16(1): 68, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570885

RESUMEN

BACKGROUND: Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of AD, possibly instigating amyloid-beta (Aß) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging, which may contribute to the elucidation of the role of HSV-1 infection as a potential AD risk factor. METHODS: To shed light into this question, serum anti-HSV IgG levels were correlated with 18F-Florbetaben-PET binding to Aß deposits and blood markers of neurodegeneration (pTau181 and neurofilament light chain) in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers. RESULTS: We showed that increased anti-HSV IgG levels are associated with higher Aß load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aß load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration. CONCLUSIONS: All together, these results suggest that HSV infection is selectively related to cortical Aß deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Humanos , Anciano , Apolipoproteína E4 , Estudios Prospectivos , Péptidos beta-Amiloides/metabolismo , Herpesvirus Humano 1/metabolismo , Herpes Simple/diagnóstico por imagen , Herpes Simple/metabolismo , Envejecimiento/metabolismo , Inmunoglobulina G , Enfermedad de Alzheimer/diagnóstico
10.
J Virol ; 98(5): e0003224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38651900

RESUMEN

Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Proteínas Luminiscentes , Neuronas , Replicación Viral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Neuronas/virología , Neuronas/metabolismo , Humanos , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Herpes Simple/virología , Genes Reporteros , Latencia del Virus/genética , Regulación Viral de la Expresión Génica , Chlorocebus aethiops , Células Vero , Citomegalovirus/genética , Citomegalovirus/fisiología
11.
Virology ; 595: 110063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564935

RESUMEN

This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.


Asunto(s)
Aciclovir , Antivirales , Herpesvirus Humano 1 , Replicación Viral , Antivirales/farmacología , Animales , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/efectos de la radiación , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/genética , Chlorocebus aethiops , Células Vero , Humanos , Replicación Viral/efectos de los fármacos , Replicación Viral/efectos de la radiación , Aciclovir/farmacología , Luz , Herpes Simple/virología , Herpes Simple/tratamiento farmacológico , Queratinocitos/virología , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos , Ensayo de Placa Viral
12.
J Immunother Cancer ; 12(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599661

RESUMEN

BACKGROUND: Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS: We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS: G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS: Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Herpes Simple , Viroterapia Oncolítica , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos , Glioblastoma/patología , Herpesvirus Humano 2 , Interleucina-2/uso terapéutico , Melanoma/terapia , Microambiente Tumoral , Estados Unidos
13.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620036

RESUMEN

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Mitocondrias , Mitocondrias/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simple/metabolismo , Herpes Simple/virología , Herpes Simple/patología , Animales , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/patología , Progresión de la Enfermedad , Chlorocebus aethiops
14.
Antimicrob Agents Chemother ; 68(5): e0011024, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619252

RESUMEN

Ocular herpes simplex virus 1 (HSV-1) infections can lead to visual impairment. Long-term acyclovir (ACV) prophylaxis reduces the frequency of recurrences but is associated with drug resistance. Novel therapies are needed to treat drug-resistant HSV-1 infections. Here, we describe the effects of trifluridine (TFT) in combination with ACV or ganciclovir (GCV) on HSV-1 replication and drug-resistance emergence. Wild-type HSV-1 was grown under increasing doses of one antiviral (ACV, GCV, or TFT) or combinations thereof (ACV + TFT or GCV + TFT). Virus cultures were analyzed by Sanger sequencing and deep sequencing of the UL23 [thymidine kinase (TK)] and UL30 [DNA polymerase (DP)] genes. The phenotypes of novel mutations were determined by cytopathic effect reduction assays. TFT showed overall additive anti-HSV-1 activity with ACV and GCV. Five passages under ACV, GCV, or TFT drug pressure gave rise to resistance mutations, primarily in the TK. ACV + TFT and GCV + TFT combinatory pressure induced mutations in the TK and DP. The DP mutations were mainly located in terminal regions, outside segments that typically carry resistance mutations. TK mutations (R163H, A167T, and M231I) conferring resistance to all three nucleoside analogs (ACV, TFT, and GCV) emerged under ACV, TFT, ACV + TFT pressure and under GCV + TFT pressure initiated from suboptimal drug concentrations. However, higher doses of GCV and TFT prevented drug resistance in the resistance selection experiments. In summary, we identified novel mutations conferring resistance to nucleoside analogs, including TFT, and proposed that GCV + TFT combination therapy may be an effective strategy to prevent the development of drug resistance.


Asunto(s)
Aciclovir , Antivirales , Farmacorresistencia Viral , Ganciclovir , Herpesvirus Humano 1 , Trifluridina , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Trifluridina/farmacología , Ganciclovir/farmacología , Antivirales/farmacología , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/efectos de los fármacos , Células Vero , Aciclovir/farmacología , Chlorocebus aethiops , Timidina Quinasa/genética , Animales , Replicación Viral/efectos de los fármacos , Humanos , Mutación , ADN Polimerasa Dirigida por ADN/genética , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología
15.
BMJ Open ; 14(4): e082512, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670599

RESUMEN

INTRODUCTION: Herpes simplex virus (HSV) is frequently detected in the respiratory tract of mechanically ventilated patients and is associated with a worse outcome. The aim of this study is to determine whether antiviral therapy in HSV-positive patients improves outcome. METHODS AND ANALYSIS: Prospective, multicentre, open-label, randomised, controlled trial in parallel-group design. Adult, mechanically ventilated patients with pneumonia and HSV type 1 detected in bronchoalveolar lavage (≥105 copies/mL) are eligible for participation and will be randomly allocated (1:1) to receive acyclovir (10 mg/kg body weight every 8 hours) for 10 days (or until discharge from the intensive care unit if earlier) or no intervention (control group). The primary outcome is mortality measured at day 30 after randomisation (primary endpoint) and will be analysed with Cox mixed-effects model. Secondary endpoints include ventilator-free and vasopressor-free days up to day 30. A total of 710 patients will be included in the trial. ETHICS AND DISSEMINATION: The trial was approved by the responsible ethics committee and by Germany's Federal Institute for Drugs and Medical Devices. The clinical trial application was submitted under the new Clinical Trials Regulation through CTIS (The Clinical Trials Information System). In this process, only one ethics committee, whose name is unknown to the applicant, and Germany's Federal Institute for Drugs and Medical Devices are involved throughout the entire approval process. Results will be published in a journal indexed in MEDLINE and CTIS. With publication, de-identified, individual participant data will be made available to researchers. TRIAL REGISTRATION NUMBER: NCT06134492.


Asunto(s)
Aciclovir , Antivirales , Respiración Artificial , Humanos , Aciclovir/uso terapéutico , Aciclovir/administración & dosificación , Antivirales/uso terapéutico , Estudios Prospectivos , Herpes Simple/tratamiento farmacológico , Lavado Broncoalveolar/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Unidades de Cuidados Intensivos , Estudios Multicéntricos como Asunto , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Líquido del Lavado Bronquioalveolar/virología , Masculino , Adulto , Resultado del Tratamiento , Femenino , Herpesvirus Humano 1/aislamiento & purificación , Simplexvirus/aislamiento & purificación
16.
Digit J Ophthalmol ; 30(1): 1-4, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601900

RESUMEN

Background: Laboratory confirmation is crucial for diagnosis and management of herpes simplex virus (HSV) keratitis. However, the sensitivity of polymerase chain reaction (PCR) in keratitis is low (25%) compared with that of mucocutaneous disease (75%). We developed an educational intervention aimed at improving the diagnostic yield of PCR. Methods: The medical records of keratitis cases seen at the emergency department of a London tertiary ophthalmic referral hospital over two distinct periods, before and after an educational program on swab technique, were reviewed retrospectively. Results: A total of 252 HSV cases were included. Increases in the laboratory-confirmed diagnosis of HSV-1 were observed, in both first presentations (11.1%-57.7%) and recurrent cases (20%-57.6%). The rate of positive HSV-1 PCR in eyes with an epithelial defect increased from 19% pre-intervention to 62% post intervention. Notably, 3% were positive for varicella zoster virus DNA, and there was a single case of Acanthamoeba keratitis. Conclusion: Our results suggest that, with proper swabbing technique, PCR may be more sensitive than previously reported.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Humanos , Proyectos Piloto , Estudios Retrospectivos , ADN Viral/análisis , Queratitis Herpética/diagnóstico , Herpesvirus Humano 1/genética , Reacción en Cadena de la Polimerasa/métodos , Herpes Simple/diagnóstico
18.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612649

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection.


Asunto(s)
Herpes Labial , Herpes Simple , Herpesvirus Humano 1 , Infección Latente , Humanos , Queratinocitos , Antivirales/farmacología
19.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673729

RESUMEN

Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.


Asunto(s)
Antivirales , Herpes Simple , Herpesvirus Humano 1 , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Polifenoles , Polifenoles/farmacología , Polifenoles/química , Estrés Oxidativo/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Antivirales/farmacología , Antivirales/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Herpes Simple/tratamiento farmacológico , Ratones , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Supervivencia Celular/efectos de los fármacos
20.
Nature ; 628(8009): 844-853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570685

RESUMEN

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Asunto(s)
Alelos , ADN Polimerasa gamma , Virus de la Encefalitis Transmitidos por Garrapatas , Herpesvirus Humano 1 , Tolerancia Inmunológica , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Ratones , Edad de Inicio , COVID-19/inmunología , COVID-19/virología , COVID-19/genética , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/inmunología , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Mutación , ARN Mitocondrial/inmunología , ARN Mitocondrial/metabolismo , SARS-CoV-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA