Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Virol ; 97(11): e0138923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888983

RESUMEN

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.


Asunto(s)
Herpesvirus Humano 8 , Interacciones Microbiota-Huesped , Proteínas Inmediatas-Precoces , Ubiquitina-Proteína Ligasas , Proteínas Virales , Activación Viral , Latencia del Virus , Replicación Viral , Humanos , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Unión Proteica , Proteómica , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo
2.
Cell Rep ; 35(2): 108976, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852834

RESUMEN

RIG-I-like receptors (RLRs) are involved in the discrimination of self versus non-self via the recognition of double-stranded RNA (dsRNA). Emerging evidence suggests that immunostimulatory dsRNAs are ubiquitously expressed but are disrupted or sequestered by cellular RNA binding proteins (RBPs). TDP-43 is an RBP associated with multiple neurological disorders and is essential for cell viability. Here, we demonstrate that TDP-43 regulates the accumulation of immunostimulatory dsRNA. The immunostimulatory RNA is identified as RNA polymerase III transcripts, including 7SL and Alu retrotransposons, and we demonstrate that the RNA-binding activity of TDP-43 is required to prevent immune stimulation. The dsRNAs activate a RIG-I-dependent interferon (IFN) response, which promotes necroptosis. Genetic inactivation of the RLR-pathway rescues the interferon-mediated cell death associated with loss of TDP-43. Collectively, our study describes a role for TDP-43 in preventing the accumulation of endogenous immunostimulatory dsRNAs and uncovers an intricate relationship between the control of cellular gene expression and IFN-mediated cell death.


Asunto(s)
Proteína 58 DEAD Box/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 8/genética , Necroptosis/genética , ARN Bicatenario/genética , Receptores Inmunológicos/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Elementos Alu , Línea Celular Tumoral , Supervivencia Celular , Citocinas/genética , Citocinas/inmunología , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Regulación de la Expresión Génica , Células HEK293 , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/inmunología , Humanos , Inmunización , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Necroptosis/inmunología , Neuronas/inmunología , Neuronas/virología , ARN Polimerasa III/genética , ARN Polimerasa III/inmunología , ARN Bicatenario/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/inmunología , ARN Viral/genética , ARN Viral/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/inmunología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Ubiquitinas/genética , Ubiquitinas/inmunología
3.
J Virol ; 95(13): e0009621, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33853955

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic human gammaherpesvirus and the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). During reactivation, viral genes are expressed in a temporal manner. These lytic genes encode transactivators, core replication proteins, or structural proteins. During reactivation, other viral factors that are required for lytic replication are expressed. The most abundant viral transcript is the long noncoding RNA (lncRNA) known as polyadenylated nuclear (PAN) RNA. lncRNAs have diverse functions, including the regulation of gene expression and the immune response. PAN possesses two main cis-acting elements, the Mta response element (MRE) and the expression and nuclear retention element (ENE). While PAN has been demonstrated to be required for efficient viral replication, the function of these elements within PAN remains unclear. Our goal was to determine if the ENE of PAN is required in the context of infection. A KSHV bacmid containing a deletion of the 79-nucleotide (nt) ENE in PAN was generated to assess the effects of the ENE during viral replication. Our studies demonstrated that the ENE is not required for viral DNA synthesis, lytic gene expression, or the production of infectious virus. Although the ENE is not required for viral replication, we found that the ENE functions to retain PAN in the nucleus, and the absence of the ENE results in an increased accumulation of PAN in the cytoplasm. Furthermore, open reading frame 59 (ORF59), LANA, ORF57, H1.4, and H2A still retain the ability to bind to PAN in the absence of the ENE. Together, our data highlight how the ENE affects the nuclear retention of PAN but ultimately does not play an essential role during lytic replication. Our data suggest that PAN may have other functional domains apart from the ENE. IMPORTANCE KSHV is an oncogenic herpesvirus that establishes latency and exhibits episodes of reactivation. KSHV disease pathologies are most often associated with the lytic replication of the virus. PAN RNA is the most abundant viral transcript during the reactivation of KSHV and is required for viral replication. Deletion and knockdown of PAN resulted in defects in viral replication and reduced virion production in the absence of PAN RNA. To better understand how the cis elements within PAN may contribute to its function, we investigated if the ENE of PAN was necessary for viral replication. Although the ENE had previously been extensively studied with both biochemical and in vitro approaches, this is the first study to demonstrate the role of the ENE in the context of infection and that the ENE of PAN is not required for the lytic replication of KSHV.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/genética , ARN Largo no Codificante/genética , Activación Viral/genética , Latencia del Virus/genética , Enfermedad de Castleman/virología , Línea Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/fisiología , Humanos , ARN Mensajero/genética , ARN Nuclear/genética , Sarcoma de Kaposi/virología , Replicación Viral/genética
4.
Rev. cuba. med. trop ; 73(1): e505, tab, graf
Artículo en Español | LILACS, CUMED | ID: biblio-1280325

RESUMEN

Introducción: El sarcoma de Kaposi es una neoplasia oportunista asociada a la inmunodepresión causada por VIH, que se relaciona con la infección por VHH tipo 8. Objetivo: Describir la presentación del sarcoma de Kaposi en personas que viven con VIH en Guinea Ecuatorial. Métodos: Se realizó un estudio descriptivo de carácter retrospectivo para identificar la prevalencia y las características epidemiológicas y clínicas del sarcoma de Kaposi en las personas que viven con VIH que acuden a las unidades de referencia para el manejo de casos en Guinea Ecuatorial. Se revisaron las historias clínicas de una muestra aleatoria y representativa de 338 pacientes del grupo que ha recibido tratamiento en las unidades de referencia para enfermedades infecciosas de Bata, desde enero de 2007 a febrero de 2012. Resultados: Se identificaron 40 pacientes diagnosticados de sarcoma de Kaposi (prevalencia del 11, 83 por ciento). La mediana de la edad al diagnóstico de sarcoma de Kaposi fue de 43 años, siendo la ratio del sexo de 1/1. La media de linfocitos CD4 al diagnóstico fue de 166 (rango 21-375) y la frecuencia de afectación oral fue de 45 por ciento. En la mayoría de los pacientes (94,6 por ciento) la observación del sarcoma de Kaposi fue anterior al inicio del tratamiento antirretroviral. Las cifras de linfocitos T CD4/mm3 inferiores a 100 aparecían sobre todo en pacientes menores de 30 años, y esto era especialmente frecuente en el grupo de mujeres (OR 11, p <0,04, Ic 95 por ciento 0,8-148). Conclusiones: El sarcoma de Kaposi es una neoplasia prevalente en personas que viven con VIH seguidas en las unidades de referencia en Guinea Ecuatorial. En mujeres menores de 30 años podría existir un diagnóstico tardío(AU)


Introduction: Kaposi sarcoma is an opportunistic neoplasm associated to the immunosuppression caused by HIV and related to infection by HHV-8. Objective: Describe the presentation of Kaposi sarcoma in people living with HIV in Equatorial Guinea. Methods: A retrospective descriptive study was conducted to identify the prevalence and the clinical and epidemiological characteristics of Kaposi sarcoma in people living with HIV attending reference units for the management of cases in Equatorial Guinea. A review was carried out of the medical records of a random sample representative of 338 patients from the group receiving treatment at Bata reference unit for infectious diseases from January 2007 to February 2012. Results: A total 40 patients diagnosed with Kaposi sarcoma were identified (prevalence of 11,83 percent). Mean age at Kaposi sarcoma diagnosis was 43 years, with a 1/1 sex ratio. The mean CD4 lymphocyte count at diagnosis was 166 (range 21-375), whereas the frequency of oral damage was 45 percent. In most patients (94.6 percent) detection of Kaposi sarcoma was prior to the start of antiretroviral therapy. CD4 T lymphocyte levels / mm3 below 100 were mainly found in patients aged under 30 years, a fact particularly frequent among women (OR 11, p< 0.04, CI 95% 0.8-148). Conclusions: Kaposi sarcoma is a neoplasm prevailing in people living with HIV who attend reference units in Equatorial Guinea. Late diagnosis could exist among women aged under 30 years(AU)


Asunto(s)
Humanos , Sarcoma de Kaposi/complicaciones , Sarcoma de Kaposi/epidemiología , VIH/patogenicidad , Herpesvirus Humano 8/crecimiento & desarrollo , Epidemiología Descriptiva , Estudios Retrospectivos , Guinea Ecuatorial , Infecciones Oportunistas Relacionadas con el SIDA/complicaciones
5.
Semin Cell Dev Biol ; 111: 135-147, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631785

RESUMEN

Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.


Asunto(s)
Evasión Inmune/genética , MicroARNs/genética , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Viral/genética , Virosis/genética , Alphapapillomavirus/genética , Alphapapillomavirus/crecimiento & desarrollo , Alphapapillomavirus/patogenicidad , Antivirales/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Regulación de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/patogenicidad , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/crecimiento & desarrollo , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Inmunidad Innata , MicroARNs/antagonistas & inhibidores , MicroARNs/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/virología , Oligonucleótidos Antisentido/uso terapéutico , ARN Circular/inmunología , ARN Largo no Codificante/inmunología , ARN Viral/inmunología , Transducción de Señal , Virosis/inmunología , Virosis/terapia , Virosis/virología
6.
Virology ; 549: 5-12, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777727

RESUMEN

Kaposi's sarcoma (KS) tends to occur in injured or inflamed sites of the body, which is described as the "Koebner phenomenon". KS is also unique in its extraordinary angio-hyperplastic inflammatory phenotype. Recently, evidence has accrued indicating that KS may derive from KSHV-infected mesenchymal stem cells (MSCs), which possess enhanced migration and homing ability. Inspired by these findings, we hypothesized that KS may arise from KSHV-infected MSCs that chemotactically migrate to preexisting inflammatory or injured sites. Here we report that KSHV infection of human MSCs significantly up-regulated expression of several chemokine receptors and enhanced cell migration ability in vitro. Furthermore, using a wound mouse model, we demonstrated that KSHV infection dramatically promotes MSCs migrating and settling in the wound sites. In addition, two mice in the KSHV-infected group showed purpura and tumors with KS-like features. Taken together, KSHV-enhanced MSC migration ability and inflammatory microenvironment play crucial roles in KS development.


Asunto(s)
Herpesvirus Humano 8/patogenicidad , Receptores CCR1/genética , Receptores CCR3/genética , Receptores CCR4/genética , Sarcoma de Kaposi/genética , Heridas no Penetrantes/virología , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Oído , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Herpesvirus Humano 8/crecimiento & desarrollo , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ligamento Periodontal/citología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores CCR1/antagonistas & inhibidores , Receptores CCR1/metabolismo , Receptores CCR3/antagonistas & inhibidores , Receptores CCR3/metabolismo , Receptores CCR4/antagonistas & inhibidores , Receptores CCR4/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Células Madre/virología , Heridas no Penetrantes/patología , Proteína Fluorescente Roja
7.
Adv Exp Med Biol ; 1225: 127-135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32030652

RESUMEN

Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) constitute the human γ-herpesviruses and two of the seven human tumor viruses. In addition to their viral oncogenes that primarily belong to the latent infection programs of these viruses, they encode proteins that condition the microenvironment. Many of these are early lytic gene products and are only expressed in a subset of infected cells of the tumor mass. In this chapter I will describe their function and the evidence that targeting them in addition to the latent oncogenes could be beneficial for the treatment of EBV- and KSHV-associated malignancies.


Asunto(s)
Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/patogenicidad , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/patogenicidad , Neoplasias/tratamiento farmacológico , Neoplasias/virología , Oncogenes , Microambiente Tumoral , Replicación Viral , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/genética , Humanos , Oncogenes/efectos de los fármacos , Replicación Viral/efectos de los fármacos
8.
Elife ; 82019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31682228

RESUMEN

IFI16, an innate immune DNA sensor, recognizes the nuclear episomal herpes viral genomes and induces the inflammasome and interferon-ß responses. IFI16 also regulates cellular transcription and act as a DNA virus restriction factor. IFI16 knockdown disrupted the latency of Kaposi's sarcoma associated herpesvirus (KSHV) and induced lytic transcripts. However, the mechanism of IFI16's transcription regulation is unknown. Here, we show that IFI16 is in complex with the H3K9 methyltransferase SUV39H1 and GLP and recruits them to the KSHV genome during de novo infection and latency. The resulting depositions of H3K9me2/me3 serve as a docking site for the heterochromatin-inducing HP1α protein leading into the IFI16-dependent epigenetic modifications and silencing of KSHV lytic genes. These studies suggest that IFI16's interaction with H3K9MTases is one of the potential mechanisms by which IFI16 regulates transcription and establish an important paradigm of an innate immune sensor's involvement in epigenetic silencing of foreign DNA.


Asunto(s)
Autoantígenos/metabolismo , ADN Viral/metabolismo , Epigénesis Genética , Proteínas de la Matriz de Golgi/metabolismo , Herpesvirus Humano 8/inmunología , Inmunidad Innata , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Genes Virales , Herpesvirus Humano 8/crecimiento & desarrollo , Humanos , Unión Proteica , Multimerización de Proteína
9.
Elife ; 82019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31647415

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal RNA modification of cellular mRNAs. m6A is recognised by YTH domain-containing proteins, which selectively bind to m6A-decorated RNAs regulating their turnover and translation. Using an m6A-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) ORF50 RNA, we identified seven members from the 'Royal family' as putative m6A readers, including SND1. RIP-seq and eCLIP analysis characterised the SND1 binding profile transcriptome-wide, revealing SND1 as an m6A reader. We further demonstrate that the m6A modification of the ORF50 RNA is critical for SND1 binding, which in turn stabilises the ORF50 transcript. Importantly, SND1 depletion leads to inhibition of KSHV early gene expression showing that SND1 is essential for KSHV lytic replication. This work demonstrates that members of the 'Royal family' have m6A-reading ability, greatly increasing their epigenetic functions beyond protein methylation.


Asunto(s)
Adenosina/análogos & derivados , Endonucleasas/metabolismo , Herpesvirus Humano 8/crecimiento & desarrollo , Interacciones Huésped-Patógeno , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Replicación Viral , Adenosina/metabolismo , Biología Computacional , Células HEK293 , Humanos , Unión Proteica , Análisis de Secuencia de ARN
10.
Virology ; 536: 27-31, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31394409

RESUMEN

The biology of primary lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection is still not well understood, which is largely attributed to the lack of cell lines permissive to robust lytic KSHV infection in vitro. Our study demonstrates that primary human dermal lymphatic microvascular endothelial cells (HDLMEC) support lytic KSHV replication following de novo infection, resulting in robust KSHV production, indicating that HDLMECs are suitable for studying the regulation of primary lytic KSHV infection. Importantly, by utilizing lytically infected HDLMECs, we show for the first time that the KSHV latent genes LANA and viral cyclin are required for lytic replication during de novo lytic infection, a function of these latent genes that has not yet been recognized. Since Kaposi's sarcoma is considered to be originated from infected lymphatic endothelial cells, HDLMECs represent a valuable in vitro cell culture model for investigating lytic KSHV infection, which has been understudied in KSHV pathogenesis.


Asunto(s)
Células Endoteliales/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Replicación Viral , Antígenos Virales/genética , Antígenos Virales/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Células Endoteliales/patología , Células HEK293 , Herpesvirus Humano 8/crecimiento & desarrollo , Humanos , Vasos Linfáticos/patología , Vasos Linfáticos/virología , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Latencia del Virus
11.
Sci Rep ; 9(1): 6416, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015491

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes both AIDS-related Kaposi's sarcoma (KS) and classic KS, but their clinical presentations are different, and respective mechanisms remain to be elucidated. The KSHV K1 gene is reportedly involved in tumorigenesis through the immunoreceptor tyrosine-based activation motif (ITAM). Since we found the sequence variations in the K1 gene of KSHV isolated from AIDS-related KS and classic KS, we hypothesized that the transformation activity of the K1 gene contributes to the different clinical presentations. To evaluate our hypothesis, we compared the transformation activities of the K1 gene between AIDS-related KS and classic KS. We also analyzed ITAM activities and the downstream AKT and NF-κB. We found that the transformation activity of AIDS-related K1 was greater than that of classic K1, and that AIDS-related K1 induced higher ITAM activity than classic K1, causing more potent Akt and NF-κB activities. K1 downregulation by siRNA in AIDS-related K1 expressing cells induced a loss of transformation properties and decreased both Akt and NF-κB activities, suggesting a correlation between the transformation activity of K1 and ITAM signaling. Our study indicates that the increased transformation activity of AIDS-related K1 is associated with its clinical aggressiveness, whereas the weak transformation activity of classic type K1 is associated with a mild clinical presentation and spontaneous regression. The mechanism of spontaneous regression of classic KS may provide new therapeutic strategy to cancer.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 8/genética , Interacciones Huésped-Patógeno/genética , Sarcoma de Kaposi/genética , Neoplasias Cutáneas/genética , Proteínas Virales/genética , Infecciones Oportunistas Relacionadas con el SIDA/diagnóstico , Infecciones Oportunistas Relacionadas con el SIDA/patología , Infecciones Oportunistas Relacionadas con el SIDA/virología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Células HeLa , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/patogenicidad , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Remisión Espontánea , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Índice de Severidad de la Enfermedad , Transducción de Señal , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/virología , Transformación Genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
13.
Nat Microbiol ; 4(1): 164-176, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420784

RESUMEN

Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.


Asunto(s)
Antígenos/metabolismo , Centrosoma/metabolismo , Infecciones por Herpesviridae/inmunología , Herpesvirus Humano 8/crecimiento & desarrollo , Proteínas de Motivos Tripartitos/metabolismo , Replicación Viral/fisiología , Células A549 , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/virología , Proteínas de Homeodominio/metabolismo , Humanos , Lámina Nuclear/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/fisiología , Ubiquitinación , Células Vero , Replicación Viral/genética
14.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30158293

RESUMEN

Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.IMPORTANCE KSHV is the causative agent of various lethal malignancies affecting immunocompromised individuals. Both lytic and latent phases of the viral life cycle contribute to the progression of these cancers. A better understanding of how viral proteins disrupt functions of a normal healthy cell to cause oncogenesis is warranted. One crucial lytic protein produced early during lytic reactivation is the multifunctional ORF59. In this report, we elucidated an important role of ORF59 in manipulating the cellular environment conducive for viral DNA replication by deregulating the normal functions of the host MCM proteins. ORF59 binds to specific MCMs and sequesters them away from replication origins in order to sabotage cellular DNA replication. Blocking cellular DNA replication ensures that cellular resources are utilized for transcription and replication of viral DNA.


Asunto(s)
División Celular/genética , Replicación del ADN/genética , Herpesvirus Humano 8/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Sarcoma de Kaposi/genética , Proteínas Virales/genética , Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/crecimiento & desarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Activación Viral/genética
15.
Nature ; 553(7689): 521-525, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342139

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids-comprising nearly 3,000 proteins and over 1,300 Å in diameter-present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP-MCP interaction-including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain-define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/ultraestructura , Mutagénesis , Replicación Viral , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Disulfuros/metabolismo , Diseño de Fármacos , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Replicación Viral/genética
16.
Nat Microbiol ; 3(1): 108-120, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109479

RESUMEN

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) modifications (m6A/m) of messenger RNA mediate diverse cellular functions. Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases that are essential for the development of KSHV-associated cancers. To date, the role of m6A/m in KSHV replication and tumorigenesis is unclear. Here, we provide mechanistic insights by examining the viral and cellular m6A/m epitranscriptomes during KSHV latent and lytic infection. KSHV transcripts contain abundant m6A/m modifications during latent and lytic replication, and these modifications are highly conserved among different cell types and infection systems. Knockdown of YTHDF2 enhanced lytic replication by impeding KSHV RNA degradation. YTHDF2 binds to viral transcripts and differentially mediates their stability. KSHV latent infection induces 5' untranslated region (UTR) hypomethylation and 3'UTR hypermethylation of the cellular epitranscriptome, regulating oncogenic and epithelial-mesenchymal transition pathways. KSHV lytic replication induces dynamic reprogramming of epitranscriptome, regulating pathways that control lytic replication. These results reveal a critical role of m6A/m modifications in KSHV lifecycle and provide rich resources for future investigations.


Asunto(s)
Adenosina/análogos & derivados , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/genética , ARN Mensajero/metabolismo , Transcriptoma , Adenosina/metabolismo , Animales , Línea Celular , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/metabolismo , Humanos , Estadios del Ciclo de Vida , Procesamiento Postranscripcional del ARN , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral , Latencia del Virus , Replicación Viral
17.
J Microbiol Biotechnol ; 28(1): 165-174, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29032648

RESUMEN

Glioblastoma multiforme is the most lethal malignant brain tumor. Despite many intensive studies, the prognosis of glioblastoma multiforme is currently very poor, with a median overall survival duration of 14 months and 2-year survival rates of less than 10%. Although viral infections have been emphasized as potential cofactors, their influences on pathways that support glioblastoma progression are not known. Some previous studies indicated that human Kaposi's sarcoma-associated herpesvirus (KSHV) was detected in healthy brains, and its microRNA was also detected in glioblastoma patients' plasma. However, a direct link between KSHV infection and glioblastoma is currently not known. In this study, we infected glioblastoma cells and glioma stem-like cells (GSCs) with KSHV to establish an in vitro cell model for KSHV-infected glioblastoma cells and glioma stem-like cells in order to identify virologic outcomes that overlap with markers of aggressive disease. Latently KSHV-infected glioblastoma cells and GSCs were successfully established. Additionally, using these cell models, we found that KSHV infection modulates the proliferation of glioma stem-like cells.


Asunto(s)
Proliferación Celular , Glioma/virología , Herpesvirus Humano 8/crecimiento & desarrollo , Células Madre/fisiología , Células Madre/virología , Células Tumorales Cultivadas/fisiología , Células Tumorales Cultivadas/virología , Células Cultivadas , Humanos
18.
J Cell Biol ; 216(9): 2745-2758, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28696226

RESUMEN

Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi's sarcoma-associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.


Asunto(s)
Cromosomas , Replicación del ADN , ADN Viral/genética , Genoma Viral , Inestabilidad Genómica , Herpesvirus Humano 8/genética , Replicación Viral , Antígenos Virales/genética , Antígenos Virales/metabolismo , Simulación por Computador , ADN Viral/biosíntesis , Evolución Molecular , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/metabolismo , Interacciones Huésped-Patógeno , Humanos , Hibridación Fluorescente in Situ , Microscopía Confocal , Microscopía por Video , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Tiempo , Imagen de Lapso de Tiempo , Transfección
19.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747501

RESUMEN

Latency-associated nuclear antigen (LANA) is a multifunctional protein encoded by members of the Rhadinovirus genus of gammaherpesviruses. Studies using murine gammaherpesvirus 68 (MHV68) demonstrated that LANA is important for acute replication, latency establishment, and reactivation in vivo Despite structural similarities in their DNA-binding domains (DBDs), LANA homologs from Kaposi sarcoma-associated herpesvirus (KSHV) and MHV68 exhibit considerable sequence divergence. We sought to determine if KSHV and MHV68 LANA homologs are functionally interchangeable. We generated an MHV68 virus that encodes KSHV LANA (kLANA) in place of MHV68 LANA (mLANA) and evaluated the virus's capacity to replicate, establish and maintain latency, and reactivate. kLANA knock-in (KLKI) MHV68 was replication competent in vitro and in vivo but exhibited slower growth kinetics and lower titers than wild-type (WT) MHV68. Following inoculation of mice, KLKI MHV68 established and maintained latency in splenocytes and peritoneal cells but did not reactivate efficiently ex vivo kLANA repressed the MHV68 promoter for ORF50, the gene that encodes the major lytic transactivator protein RTA, while mLANA did not, suggesting a likely mechanism for the KLKI MHV68 phenotypes. Bypassing this repression by providing MHV68 RTA in trans rescued KLKI MHV68 replication in tissue culture and enabled detection of KLKI MHV68 reactivation ex vivo These data demonstrate that kLANA and mLANA are functionally interchangeable for establishment and maintenance of latency and suggest that repression of lytic replication by kLANA, as previously shown with KSHV, is a kLANA-specific function that is transferable to MHV68.IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) are members of the Rhadinovirus genus of gammaherpesviruses. These viruses establish lifelong infections that place their respective human and murine hosts at risk for cancer. Latency-associated nuclear antigen (LANA) is a conserved Rhadinovirus protein that is necessary for long-term chronic infection by these viruses. To better understand the conserved functions performed by LANA homologs, we generated a recombinant MHV68 virus that encodes the KSHV LANA protein in place of the MHV68 LANA homolog. We determined that the KSHV LANA protein is capable of supporting MHV68 latency in a mouse model of chronic infection but also functions to repress viral replication. This work describes an in vivo model system for defining evolutionarily conserved and divergent functions of LANA homologs in Rhadinovirus infection and disease.


Asunto(s)
Antígenos Virales/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Proteínas Inmediatas-Precoces/genética , Proteínas Nucleares/genética , Rhadinovirus/crecimiento & desarrollo , Transactivadores/genética , Latencia del Virus/genética , Células 3T3 , Animales , Antígenos Virales/biosíntesis , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Regiones Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo
20.
Apoptosis ; 22(9): 1098-1115, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28653223

RESUMEN

Kaposi's sarcoma associated herpes virus (KSHV) infected primary effusion lymphoma (PEL) is a rare aggressive form of non-Hodgkin's lymphoma of B cells. KSHV latent and lytic antigens modulate several host cellular signalling pathways especially mammalian target of rapamycin (mTOR), STAT-3 and nuclear factor-kappa B (NF-κB) for rapid tumor progression and immune evasion. Current chemotherapeutic strategies are becoming ineffective as they kill only dividing cells and inefficient to target molecular pathways crucial for active virus replication and its survival. In this study, we evaluated the efficacy of everolimus, an mTOR inhibitor in inducing apoptosis of PEL cells. Dose-dependent treatment of everolimus triggered mitochondria-mediated caspase-dependent apoptosis in PEL cells. Everolimus downregulated KSHV latent antigen expression with concurrent blocking of lytic reactivation for active virus replication. Everolimus also inhibited latent antigen mediated constitutively active STAT-3 and NF-κB signalling. We co-cultured everolimus treated PEL cells with immature dendritic cells and found activation of dendritic cells with increase in surface expression of CD86 and HLA-DR. As everolimus targets and disrupts KSHV antigens as well as antigen facilitated multiple signalling pathways necessary for KSHV survival and maintenance of infection with synchronised boosting of immune system against viral infection, it can be a better therapeutic approach towards treatment of PEL.


Asunto(s)
Apoptosis/efectos de los fármacos , Everolimus/farmacología , Herpesvirus Humano 8/efectos de los fármacos , Linfoma de Efusión Primaria/virología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Herpesvirus Humano 8/crecimiento & desarrollo , Humanos , Linfoma de Efusión Primaria/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA