Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852754

RESUMEN

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Asunto(s)
Corteza Cerebral , Filaminas , Proteína de Unión al GTP rac1 , Animales , Filaminas/metabolismo , Filaminas/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Ratones , Corteza Cerebral/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Células Piramidales/metabolismo , Neurogénesis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Neuronas/metabolismo , Ratones Transgénicos , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Neuropéptidos/metabolismo , Neuropéptidos/genética
2.
Science ; 376(6599): eabf9088, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709258

RESUMEN

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Asunto(s)
Centrosoma , Células-Madre Neurales , Neurogénesis , Neuronas , Heterotopia Nodular Periventricular , Mapas de Interacción de Proteínas , Empalme Alternativo , Animales , Encéfalo/anomalías , Centrosoma/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Microtúbulos/metabolismo , Neuronas/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Proteoma/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo
3.
Semin Cell Dev Biol ; 111: 15-22, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32741653

RESUMEN

Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Organoides/metabolismo , Heterotopia Nodular Periventricular/genética , Diferenciación Celular , Corteza Cerebral/anomalías , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiopatología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Humanos , Lisencefalia/metabolismo , Lisencefalia/patología , Lisencefalia/fisiopatología , Megalencefalia/metabolismo , Megalencefalia/patología , Megalencefalia/fisiopatología , Microcefalia/metabolismo , Microcefalia/patología , Microcefalia/fisiopatología , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Organoides/patología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células
4.
Nat Cell Biol ; 20(8): 942-953, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013108

RESUMEN

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a signalling network known as the unfolded protein response (UPR). Here, we identified filamin A as a major binding partner of the ER stress transducer IRE1α. Filamin A is an actin crosslinking factor involved in cytoskeleton remodelling. We show that IRE1α controls actin cytoskeleton dynamics and affects cell migration upstream of filamin A. The regulation of cytoskeleton dynamics by IRE1α is independent of its canonical role as a UPR mediator, serving instead as a scaffold that recruits and regulates filamin A. Targeting IRE1α expression in mice affected normal brain development, generating a phenotype resembling periventricular heterotopia, a disease linked to the loss of function of filamin A. IRE1α also modulated cell movement and cytoskeleton dynamics in fly and zebrafish models. This study unveils an unanticipated biological function of IRE1α in cell migration, whereby filamin A operates as an interphase between the UPR and the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Endorribonucleasas/metabolismo , Fibroblastos/metabolismo , Filaminas/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endorribonucleasas/deficiencia , Endorribonucleasas/genética , Evolución Molecular , Femenino , Filaminas/genética , Células HEK293 , Humanos , Cinética , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Respuesta de Proteína Desplegada , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Hum Mol Genet ; 26(21): 4278-4289, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973161

RESUMEN

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Adulto , Animales , Encéfalo/anomalías , Corteza Cerebral/metabolismo , Drosophila melanogaster , Epilepsia/genética , Epilepsia/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Malformaciones del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Linaje , Heterotopia Nodular Periventricular/genética , Terminales Presinápticos , Ratas , Convulsiones/metabolismo , Sinapsis/metabolismo , Secuenciación del Exoma
7.
Dev Cell ; 41(5): 481-495.e5, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552558

RESUMEN

Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.


Asunto(s)
Encéfalo/anomalías , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/fisiología , Células-Madre Neurales/fisiología , Heterotopia Nodular Periventricular/patología , Proteínas Supresoras de Tumor/fisiología , Animales , Apoptosis , Encéfalo/metabolismo , Encéfalo/patología , Cadherinas/genética , Cadherinas/metabolismo , Proliferación Celular , Células Cultivadas , Proteínas del Citoesqueleto , Células Madre Embrionarias/citología , Femenino , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/citología , Heterotopia Nodular Periventricular/metabolismo , Fosforilación
8.
J Neurochem ; 140(1): 82-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787898

RESUMEN

We analyzed the role of a heterotrimeric G-protein, Gi2, in the development of the cerebral cortex. Acute knockdown of the α-subunit (Gαi2) with in utero electroporation caused delayed radial migration of excitatory neurons during corticogenesis, perhaps because of impaired morphology. The migration phenotype was rescued by an RNAi-resistant version of Gαi2. On the other hand, silencing of Gαi2 did not affect axon elongation, dendritic arbor formation or neurogenesis at ventricular zone in vivo. When behavior analyses were conducted with acute Gαi2-knockdown mice, they showed defects in social interaction, novelty recognition and active avoidance learning as well as increased anxiety. Subsequently, using whole-exome sequencing analysis, we identified a de novo heterozygous missense mutation (c.680C>T; p.Ala227Val) in the GNAI2 gene encoding Gαi2 in an individual with periventricular nodular heterotopia and intellectual disability. Collectively, the phenotypes in the knockdown experiments suggest a role of Gαi2 in the brain development, and impairment of its function might cause defects in neuronal functions which lead to neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/fisiología , Discapacidad Intelectual/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animales , Reacción de Prevención/fisiología , Células COS , Corteza Cerebral/diagnóstico por imagen , Chlorocebus aethiops , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/deficiencia , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Heterotopia Nodular Periventricular/diagnóstico por imagen , Heterotopia Nodular Periventricular/genética , Embarazo
9.
Epilepsia ; 56(4): 626-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752321

RESUMEN

OBJECTIVE: Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS: To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS: Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE: Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.


Asunto(s)
Modelos Animales de Enfermedad , Genes fos/fisiología , Hipocampo/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animales , Femenino , Hipocampo/patología , Técnicas de Cultivo de Órganos , Heterotopia Nodular Periventricular/patología , Embarazo , Ratas , Ratas Sprague-Dawley
10.
J Neurosci ; 35(2): 610-20, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589755

RESUMEN

Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.


Asunto(s)
Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Células-Madre Neurales/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animales , Proliferación Celular , Regulación hacia Abajo , Filaminas/genética , Filaminas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/fisiología , Heterotopia Nodular Periventricular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Biomed Res Int ; 2013: 805467, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24191251

RESUMEN

Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.


Asunto(s)
Axones , Cerebelo , Neuroglía , Heterotopia Nodular Periventricular , Animales , Axones/metabolismo , Axones/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Neuroglía/metabolismo , Neuroglía/patología , Factor de Transcripción 2 de los Oligodendrocitos , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Ratas , Ratas Sprague-Dawley
12.
Epileptic Disord ; 14(4): 398-402, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23274163

RESUMEN

AIM: The extracellular matrix glycoprotein reelin plays a crucial role in the control of neuronal migration and during development is expressed by Cajal-Retzius cells in the marginal zone. The purpose of this study was to investigate the possible involvement of reelin in the pathogenesis of human nodular heterotopia, a malformation of cortical development frequently associated with focal drug-resistant epilepsy. METHODS: Five patients presenting with subcortical nodular heterotopia and referred for epilepsy surgery, after a comprehensive presurgical investigation, were considered. The surgical specimens were studied by combining immunohistochemistry, double immunofluorescence, and in situ hybridisation procedures. RESULTS: The selected cases were characterised by the presence of multiple nodules presenting in the core cell-free zones, reminiscent of the cortical molecular layer. In all cases, small reelin-positive cells, without typical Cajal-Retzius cell features, were distributed inside the nodules and localised in these cell body-sparse regions. CONCLUSION: The presented data corroborate the hypothesis that reelin might be involved in human heterotopic nodular formation.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/fisiología , Epilepsias Parciales/etiología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Serina Endopeptidasas/metabolismo , Adulto , Moléculas de Adhesión Celular Neuronal/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Epilepsias Parciales/cirugía , Proteínas de la Matriz Extracelular/fisiología , Femenino , Humanos , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Neuronas/metabolismo , Heterotopia Nodular Periventricular/complicaciones , Proteína Reelina , Serina Endopeptidasas/fisiología , Adulto Joven
13.
Hum Mol Genet ; 21(5): 1004-17, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22076441

RESUMEN

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations. Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060).


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuroglía/fisiología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Animales , Movimiento Celular , Proliferación Celular , Corteza Cerebral/embriología , Corteza Cerebral/patología , Ventrículos Cerebrales/patología , Proteínas Contráctiles/genética , Modelos Animales de Enfermedad , Femenino , Filaminas , Humanos , Lactante , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Neocórtex/embriología , Neocórtex/metabolismo , Neocórtex/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/fisiología , Interferencia de ARN , Ratas , Convulsiones/etiología
14.
Anat Sci Int ; 85(1): 38-45, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19582544

RESUMEN

In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.


Asunto(s)
5,6-Dihidroxitriptamina/análogos & derivados , Creatinina/análogos & derivados , Hipocampo/efectos de los fármacos , Microcefalia/fisiopatología , Fibras Nerviosas Amielínicas/fisiología , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Serotonina/metabolismo , 5,6-Dihidroxitriptamina/farmacología , Factores de Edad , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión , Creatinina/farmacología , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Inmunohistoquímica , Masculino , Acetato de Metilazoximetanol/análogos & derivados , Microcefalia/inducido químicamente , Microcefalia/metabolismo , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Neuronas/fisiología , Heterotopia Nodular Periventricular/inducido químicamente , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley
15.
Epilepsia ; 49(5): 826-31, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18363710

RESUMEN

BACKGROUND: Alpha-[11C]methyl-L-tryptophan (alpha-MTrp) positron emission tomography (PET) is a promising tool in the localization of the epileptogenic area in selected group of focal epilepsy patients. Electrophysiological evidence suggests the involvement of the neocortex in periventricular nodular heterotopia (PVNH). PURPOSE: To determine whether alpha-MTrp PET can detect neocortical changes in patients with PVNH. METHODS: Four patients (2 male, mean age 28, range 23-35 years) with PVNH and intractable seizures were studied. The functional image in each patient was compared with those from 21 healthy controls (mean age 34.6 +/- 14.2 years) by using statistical parametric mapping (SPM). The location of increased alpha-MTrp uptake was compared with the location of the EEG focus. A significant cluster was defined as a cluster with a height p = 0.005 and an extent threshold 100. RESULTS: Alpha-MTrp PET revealed increased cortical uptake in two of four patients. The area of increased alpha-MTrp uptake in one patient was widespread. In the other patient, the area of increased uptake did not include the region where most seizures were generated on EEG. alpha-MTrp PET did not show increased uptake in the heterotopic nodules in any of the patients. CONCLUSIONS: Alpha-MTrp PET suggests abnormal metabolism of tryptophan in the neocortex. The increased uptake may be diffuse and may not co-localize with the EEG focus. This preliminary study suggests that alpha-MTrp PET may be useful, in conjunction with other evaluations, in localizing epileptic focus in patients with PVNH and refractory seizures.


Asunto(s)
Radioisótopos de Carbono , Epilepsia/diagnóstico por imagen , Heterotopia Nodular Periventricular/diagnóstico por imagen , Triptófano/análogos & derivados , Adulto , Mapeo Encefálico , Radioisótopos de Carbono/metabolismo , Grupos Control , Electroencefalografía/estadística & datos numéricos , Epilepsia/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neocórtex/metabolismo , Neocórtex/fisiopatología , Heterotopia Nodular Periventricular/metabolismo , Tomografía de Emisión de Positrones/estadística & datos numéricos , Serotonina/metabolismo , Triptófano/metabolismo
16.
Trends Neurosci ; 31(2): 54-61, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18201775

RESUMEN

Postmitotic cortical neurons that fail to initiate migration can remain near their site of origin and form persistent periventricular nodular heterotopia (PH). In human telencephalon, this malformation is most commonly associated with Filamin-A (FLNa) mutations. The lack of genetic animal models that reliably produce PH has delayed our understanding of the underlying molecular mechanisms. This review examines PH pathogenesis using a new mouse model. Although PH have not been observed in Flna-deficient mice generated thus far, the loss of MEKK4, a regulator of Flna, produces striking PH in mice and offers insight into the mechanisms involved in neuronal migration initiation. Elucidating the basic functions of FLNa and associated molecules is crucial for understanding the causes of PH and for developing prevention for at-risk patients.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral/crecimiento & desarrollo , MAP Quinasa Quinasa Quinasa 4/genética , Heterotopia Nodular Periventricular/genética , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Modelos Animales de Enfermedad , Filaminas , Humanos , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA