Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
1.
Life Sci ; 351: 122807, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852800

RESUMEN

AIMS: Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS: To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS: DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE: We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Malato Deshidrogenasa , Mitocondrias , Dinámicas Mitocondriales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Malato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Células HeLa , Animales , Hexanonas/farmacología , Hexanonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Activación Enzimática , Hidrocarburos Clorados
2.
Biochem Pharmacol ; 225: 116243, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697310

RESUMEN

The spread of malarial parasites resistant to first-line treatments such as artemisinin combination therapies is a global health concern. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-one) originally found in the cellular slime mould Dictyostelium discoideum. We previously showed that some derivatives of DIF-1, particularly DIF-1(+2) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) octan-1-one), exert potent antimalarial activities. In this study, we synthesised DIF-1(+3) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) nonan-1-one). We then evaluated the effects of DIF-1(+3) in vitro on Plasmodium falciparum and in vivo over 7 days (50-100 mg/kg/day) in a mouse model of Plasmodium berghei. DIF-1(+3) exhibited a half-maximal inhibitory concentration of approximately 20-30 % of DIF-1(+2) in three laboratory strains with a selectivity index > 263, including in strains resistant to chloroquine and artemisinin. Parasite growth and multiplication were almost completely suppressed by treatment with 100 mg/kg DIF-1(+3). The survival time of infected mice was significantly increased (P = 0.006) with no apparent adverse effects. In summary, addition of an acyl group to DIF-1(+2) to prepare DIF-1(+3) substantially enhanced antimalarial activity, even in drug-resistant malaria, indicating the potential of applying DIF-1(+3) for malaria treatment.


Asunto(s)
Antimaláricos , Hexanonas , Plasmodium falciparum , Antimaláricos/farmacología , Animales , Ratones , Hexanonas/farmacología , Hexanonas/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/parasitología , Dictyostelium/efectos de los fármacos , Acilación , Femenino , Hidrocarburos Clorados
3.
J Econ Entomol ; 117(3): 1032-1040, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38625049

RESUMEN

3-Hydroxyhexan-2-one (3-C6-ketol) has emerged as the most conserved pheromone structure within the beetle family Cerambycidae. In this study, we report the sex-specific production of this compound by males of 12 species of South American cerambycid beetles. Males of Chrysoprasis chalybea Redtenbacher and Mallosoma zonatum (Sahlberg) (Tribe Dichophyiini), and Ambonus lippus (Germar), Eurysthea hirta (Kirby), Pantonyssus nigriceps Bates, Stizocera plicicollis (Germar), and Stizocera tristis (Guérin-Méneville) (Elaphidiini) produced 3R-C6-ketol as a single component, whereas males of Neoclytus pusillus (Laporte & Gory) (Clytini), Aglaoschema concolor (Gounelle), Orthostoma abdominale (Gyllenhal) (Compsocerini), Dorcacerus barbatus (Olivier), and Retrachydes thoracicus thoracicus (Olivier) (Trachyderini) produced 3R-C6-ketol, along with lesser amounts of other compounds. In field trials testing 8 known cerambycid pheromone compounds, C. chalybea, E. hirta, and R. t. thoracicus were attracted in significant numbers to traps baited with 3-C6-ketol. A second field experiment provided support for the strategy of using the attraction of cerambycid species to test lures as a method of providing leads to their likely pheromone components. Because both sexes are attracted to these aggregation-sex pheromones, live beetles can be obtained from baited traps to verify they produce the compound(s) to which they were attracted, that is, that the compounds are indeed pheromone components.


Asunto(s)
Escarabajos , Animales , Masculino , Femenino , Hexanonas/farmacología , Feromonas/farmacología , Atractivos Sexuales/farmacología , Especificidad de la Especie , América del Sur
4.
Microbiol Res ; 281: 127611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228018

RESUMEN

Volatile organic compounds (VOCs) produced by bacteria play an important, yet relatively unexplored role in interactions between plants and phytopathogens. In this study, the soil bacterium Bacillus halotolerans NYG5 was identified as a potent biocontrol agent against several phytopathogenic fungi (Macrophomina phaseolina, Rhizoctonia solani, Pythium aphanidermatum, and Sclerotinia sclerotiorum) through the production of VOCs. NYG5-emitted VOCs also inhibited the growth of bacterial pathogens (Agrobacterium tumefaciens, Xanthomonas campestris, Clavibacter michiganensis, and Pseudomonas syringae). When cultured in various growth media, NYG5 produced a variety of VOCs. Five distinct VOCs (2-methylbutanoic acid, 5-methyl-2-hexanone, 2,3-hexanedione, 2-ethyl-1-hexanol, and 6-methyl-2-heptanone) were identified using headspace GC-MS. 2,3-Hexanedione exhibited potent lethal effects on the tested phytopathogens and nematicidal activity against Meloidogyne javanica at a concentration of 50 ppm. In addition, 0.05 ppm 2,3-hexanedione stimulated the expression of pathogenesis-related genes 1 and 2 in Arabidopsis thaliana. Interestingly, 2,3-hexanedione is used as a food additive at higher concentrations than those tested in this study. Hence, 2,3-hexanedione is a promising biologically active compound that might serve as a sustainable alternative to common chemical pesticides and an elicitor of plant defense.


Asunto(s)
Bacillus , Hexanonas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacterias/metabolismo
7.
Artículo en Chino | MEDLINE | ID: mdl-37248089

RESUMEN

Hexane is a widely used organic solvent in industry, and chronic hexane poisoning is the main occupational toxic lesion in China. In particular, axonal and myelin lesions in the distal thick fibers of the peripheral nervous system may be caused by 2, 5-hexanedione (2, 5-HD), an intermediate metabolite of n-hexane in humans. Hexane has toxic effects not only on the nervous system but also on the liver, kidneys, and reproductive organs. In this paper, we review the progress of research on the mechanism of n-hexane toxic neuropathy.


Asunto(s)
Hexanos , Hexanonas , Humanos , Hexanos/toxicidad , Industrias , Solventes
8.
J Pharmacol Sci ; 152(1): 39-49, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059490

RESUMEN

Differentiation-inducing factor 1 (DIF-1) is a morphogen produced by Dictyostelium discoideum that inhibits the proliferation and migration of both D. discoideum and most mammalian cells. Herein, we assessed the effect of DIF-1 on mitochondria, because DIF-3, which is similar to DIF-1, reportedly localizes in the mitochondria when added exogenously, however the significance of this localization remains unclear. Cofilin is an actin depolymerization factor that is activated by dephosphorylation at Ser-3. By regulating the actin cytoskeleton, cofilin induces mitochondrial fission, the first step in mitophagy. Here, we report that DIF-1 activates cofilin and induces mitochondrial fission and mitophagy mainly using human umbilical vein endothelial cells (HUVECs). AMP-activated kinase (AMPK), a downstream molecule of DIF-1 signaling, is required for cofilin activation. Pyridoxal phosphatase (PDXP)-known to directly dephosphorylate cofilin-is also required for the effect of DIF-1 on cofilin, indicating that DIF-1 activates cofilin through AMPK and PDXP. Cofilin knockdown inhibits mitochondrial fission and decreases mitofusin 2 (Mfn2) protein levels, a hallmark of mitophagy. Taken together, these results indicate that cofilin is required for DIF-1- induced mitochondrial fission and mitophagy.


Asunto(s)
Dictyostelium , Hexanonas , Animales , Humanos , Proteínas Quinasas Activadas por AMP , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/farmacología , Dinámicas Mitocondriales , Dictyostelium/metabolismo , Células Endoteliales/metabolismo , Diferenciación Celular , Monoéster Fosfórico Hidrolasas , Piridoxal/farmacología , Hexanonas/farmacología , Mamíferos/metabolismo
9.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080135

RESUMEN

The electropolymerization of three phenylphenol isomers was studied in methyl isobutyl ketone and mesityl oxide, and the remarkable differences highlighted the importance of the carbon-carbon double bond in mesityl oxide. In the case of each substrate, a brownish deposit formed during the electrooxidation. The obvious difference between the polymers formed from the two solvents was recognized via voltammetric signal enhancement of 4-methoxyphenol and 4-chlorophenol, and it was only observed in the case of mesityl oxide. The experiments highlighted that incorporation of a cavitand with biphenyl groups on the upper rim of the polymers of phenylphenols improved the results to a small extent. The cavitand was, itself, electroactive without any fouling effect. As 2-phenylphenol is by far the cheapest of the three isomers, a cavitand was incorporated into its polymer, which was exploited to solve analytical problems while mesityl oxide was used as solvent. Useful quantifications were achieved in organic solvents; however, it failed under aqueous conditions due to the high hydrophobicity of the deposit. Application of differential pulse voltammetry for 4-methoxyphenol and 4-chlorophenol gave detection limits of 9.28 and 50.8 µM in acetonitrile, respectively. This procedure resulted in the immobilization of cavitand derivatives onto the electrode's surface, and the layer formed offered selective sensing of phenols by electrochemical methods.


Asunto(s)
Fenoles , Polímeros , Carbono , Electrodos , Éteres Cíclicos , Hexanonas , Metil n-Butil Cetona , Polimerizacion , Resorcinoles , Solventes
10.
ChemSusChem ; 15(13): e202200437, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394696

RESUMEN

The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.


Asunto(s)
Rutenio , Catálisis , Carbón Orgánico , Furaldehído/análogos & derivados , Hexanonas , Hidrogenación , Rutenio/química
11.
ChemSusChem ; 15(13): e202102444, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34918485

RESUMEN

Currently, low intimacy between hydrogenation sites and acidic sites causes unsatisfactory catalytic activity and selectivity for the synthesis of 2,5-hexanedione from C6 furan aldehydes (5-methylfurfural, 5-hydroxymethylfurfural). Herein, iodine(I) modification of Pd-supported catalysts (such as PdI/Al2 O3 and PdI/SiO2 ) was investigated to modulate the hydrogenation sites and acidic sites. Unlike Pd catalysts that produced 71.4 % yield of 2-hydroxymethyl-5-methyl tetrahydrofuran via an overhydrogenation route of 5-methylfurfural, PdI catalysts showed a high efficiency for 2,5-hexanedione with 93.7 % yield by a hydrogenative ring-opening route. More importantly, the selective synthesis of 2,5-hexanedione from 5-hydroxymethylfurfural with a high yield of 50.2 % by the hydrogenolysis and subsequent ring-opening route was reported for the first time. I-modified Pd nanoparticles produced in-situ hydrogen spillover, which promoted the selective C=O hydrogenation and ring-opening steps by regulating the adsorption configuration of the reactants and the transformation of Lewis to Brønsted acidity, respectively.


Asunto(s)
Aldehídos , Yodo , Furanos , Hexanonas , Yoduros , Dióxido de Silicio
12.
Biochem Pharmacol ; 194: 114834, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774530

RESUMEN

Malaria, which is caused by protozoa of the genus Plasmodium, remains a major endemic public health problem worldwide. Since artemisinin combination therapies are used as a first-line treatment in all endemic regions, the emergence of parasites resistant to these regimens has become a serious problem. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone originally found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivatives exhibit a range of biological activities. In the present study, we investigated the effects of 41 DIF derivatives on the growth of Plasmodium falciparum in vitro using four laboratory strains and 12 field isolates. Micromolar concentrations of several DIF derivatives strongly suppressed the growth of the four laboratory strains, including strains that exhibited resistance to chloroquine and artemisinin, as well as strains that were susceptible to these drugs. In addition, DIF-1(+2), the most potent derivative, strongly suppressed the growth of 12 field isolates. We also examined the effects of DIF-1(+2) on the activity of the rodent malarial parasite Plasmodium berghei in mice. Intraperitoneal administration of DIF-1(+2) over 4 days (50 or 70 mg/kg/day) significantly suppressed the growth of the parasite in the blood with no apparent adverse effects, and a dose of 70 mg/kg/day significantly prolonged animal survival. These results suggest that DIF derivatives, such as DIF-1(+2), could serve as new lead compounds for the development of antimalarial agents.


Asunto(s)
Antimaláricos/farmacología , Dictyostelium , Hexanonas/farmacología , Parásitos/crecimiento & desarrollo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Células 3T3-L1 , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Parásitos/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
15.
J Chem Ecol ; 47(12): 941-949, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34532812

RESUMEN

Here, we study the pheromone chemistry of two South American cerambycid beetle species, and their behavioral responses to candidate pheromone components. Adult males of Stizocera phtisica Gounelle (subfamily Cerambycinae: tribe Elaphidiini) produced a sex-specific blend of (R)-3-hydroxyhexan-2-one with lesser amounts of 3-methylthiopropan-1-ol. In field bioassays, traps baited with racemic 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol did not catch conspecific beetles, but did catch both sexes of a sympatric species, Chydarteres dimidiatus dimidiatus (F.) (Cerambycinae: Trachyderini). We found that males of this species also produce (R)-3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol, and small amounts of 2-phenylethanol. Subsequent bioassays with these compounds showed that a blend of 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol constitutes the aggregation-sex pheromone of C. d. dimidiatus, with 2-phenylethanol not influencing the attraction of conspecifics. During the field bioassays, six other species in the Cerambycinae also were caught in significant numbers, including Aglaoschema ventrale (Germar) (tribe Compsocerini), congeners Chrysoprasis aurigena (Germar), Chrysoprasis linearis Bates, and an unidentified Chrysoprasis species (Dichophyiini), and Cotyclytus curvatus (Germar) and Itaclytus olivaceus (Laporte & Gory) (both Clytini), suggesting that one or more of the compounds tested are also pheromone components for these species.


Asunto(s)
Escarabajos/efectos de los fármacos , Feromonas/farmacología , Animales , Escarabajos/fisiología , Hexanonas/farmacología , Masculino , América del Sur , Especificidad de la Especie
16.
Stem Cell Res Ther ; 12(1): 436, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348774

RESUMEN

BACKGROUND: N-hexane, with its metabolite 2,5-hexanedine (HD), is an industrial hazardous material. Chronic hexane exposure causes segmental demyelination in the peripheral nerves, and high-dose intoxication may also affect central nervous system. Demyelinating conditions are difficult to treat and stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted motor function recovery in rats modeling hexane neurotoxicity. This work aimed to explore the underlying mechanisms and focused on the changes in spinal cord. METHODS: Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). A bolus of BMSCs (5 × 107 cells/kg) was injected via tail vein. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD ± BMSC-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and morphometric analysis. The expressional changes of Hes1, a transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied, and some key signaling molecules were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA and performed using SPSS 13.0. RESULTS: The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent of Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression, and BMSCs were found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. CONCLUSIONS: Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Diferenciación Celular , Hexanonas , Ratas , Ratas Sprague-Dawley , Médula Espinal , Factor de Transcripción HES-1/genética , Factor de Necrosis Tumoral alfa/genética
17.
Biosci Rep ; 41(4)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33792642

RESUMEN

Increasing evidence suggests that n-hexane induces nerve injury via neuronal apoptosis induced by its active metabolite 2,5-hexanedione (HD). However, the underlying mechanism remains unknown. Studies have confirmed that pro-nerve growth factor (proNGF), a precursor of mature nerve growth factor (mNGF), might activate apoptotic signaling by binding to p75 neurotrophin receptor (p75NTR) in neurons. Therefore, we studied the mechanism of the proNGF/p75NTR pathway in HD-induced neuronal apoptosis. Sprague-Dawley (SD) rats were injected with 400 mg/kg HD once a day for 5 weeks, and VSC4.1 cells were treated with 10, 20, and 40 mM HD in vitro. Results showed that HD effectively induced neuronal apoptosis. Moreover, it up-regulated proNGF and p75NTR levels, activated c-Jun N-terminal kinase (JNK) and c-Jun, and disrupted the balance between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Our findings revealed that the proNGF/p75NTR signaling pathway was involved in HD-induced neuronal apoptosis; it can serve as a theoretical basis for further exploration of the neurotoxic mechanisms of HD.


Asunto(s)
Apoptosis , Hexanonas/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Neurotoxinas/farmacología , Precursores de Proteínas/metabolismo , Médula Espinal/efectos de los fármacos , Animales , Línea Celular Tumoral , Hexanonas/toxicidad , MAP Quinasa Quinasa 4/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento/metabolismo , Transducción de Señal , Médula Espinal/citología , Médula Espinal/metabolismo
18.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669058

RESUMEN

Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (a polyketide) found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivative, DIF-1(3M) promote glucose consumption in vitro in mammalian cells and in vivo in diabetic rats; they are expected to be the leading antiobesity and antidiabetes compounds. In this study, we investigated the mechanisms underlying the actions of DIF-1 and DIF-1(3M). In isolated mouse liver mitochondria, these compounds at 2-20 µM promoted oxygen consumption in a dose-dependent manner, suggesting that they act as mitochondrial uncouplers, whereas CP-DIF-1 (another derivative of DIF-1) at 10-20 µM had no effect. In confluent mouse 3T3-L1 fibroblasts, DIF-1 and DIF-1(3M) but not CP-DIF-1 induced phosphorylation (and therefore activation) of AMP kinase (AMPK) and promoted glucose consumption and metabolism. The DIF-induced glucose consumption was reduced by compound C (an AMPK inhibitor) or AMPK knock down. These data suggest that DIF-1 and DIF-1(3M) promote glucose uptake, at least in part, via an AMPK-dependent pathway in 3T3-L1 cells, whereas cellular metabolome analysis revealed that DIF-1 and DIF-1(3M) may act differently at least in part.


Asunto(s)
Adenilato Quinasa/metabolismo , Dictyostelium/metabolismo , Glucosa/metabolismo , Hexanonas/farmacología , Hidrocarburos Clorados/farmacología , Metaboloma/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Células 3T3 , Adenilato Quinasa/antagonistas & inhibidores , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fosforilación , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos
19.
Plant Cell Physiol ; 62(4): 610-623, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33508105

RESUMEN

In maize, nitrate regulates root development thanks to the coordinated action of many players. In this study, the involvement of strigolactones (SLs) and auxin as putative components of the nitrate regulation of lateral root (LR) was investigated. To this aim, the endogenous SL content of maize root in response to nitrate was assessed by liquid chromatography with tandem mass Spectrometry (LC-MS/MS) and measurements of LR density in the presence of analogues or inhibitors of auxin and SLs were performed. Furthermore, an untargeted RNA-sequencing (RNA-seq)-based approach was used to better characterize the participation of auxin and SLs to the transcriptional signature of maize root response to nitrate. Our results suggested that N deprivation induces zealactone and carlactonoic acid biosynthesis in root, to a higher extent if compared to P-deprived roots. Moreover, data on LR density led to hypothesize that the induction of LR development early occurring upon nitrate supply involves the inhibition of SL biosynthesis, but that the downstream target of SL shutdown, besides auxin, also includes additional unknown players. Furthermore, RNA-seq results provided a set of putative markers for the auxin- or SL-dependent action of nitrate, meanwhile also allowing to identify novel components of the molecular regulation of maize root response to nitrate. Globally, the existence of at least four different pathways was hypothesized: one dependent on auxin, a second one mediated by SLs, a third deriving from the SL-auxin interplay, and a last one attributable to nitrate itself through further downstream signals. Further work will be necessary to better assess the reliability of the model proposed.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Nitratos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación , Hexanonas/farmacología , Nitratos/farmacología , Nitrógeno/metabolismo , Orobanchaceae/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Triazoles/farmacología , Zea mays/efectos de los fármacos , Zea mays/metabolismo
20.
Free Radic Biol Med ; 162: 561-570, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212186

RESUMEN

Chronic exposure to n-hexane causes sensorimotor neuropathy, which is mediated by 2,5-hexanedione (HD), a toxic metabolite of n-hexane. Activation of the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome is involved in multiple neurodegenerative diseases. However, whether the NLRP3 inflammasome contributes to HD-induced neurotoxicity remains unclear. In this study, the effects of HD on NLRP3 inflammasome activation and the underlying mechanisms were determined by using HD-treated rat and cell culture models. Increased NLRP3 expression, caspase-1 activation and interleukin-1ß production were observed in both the brain and spinal cord of HD-treated rats. Double-immunofluorescence staining showed that ASC speck formation and caspase-1 expression were mainly localized in microglia. HD-induced activation of the NLRP3 inflammasome was further mirrored in BV2 microglial cells and was associated with NADPH oxidase activation. Interestingly, inhibition of NADPH oxidase by apocynin or specific siRNAs significantly mitigated HD-induced NLRP3 inflammasome activation. Furthermore, apocynin suppressed activation of the MAPK and NF-κB signaling pathways. Blocking activation of p38-MAPK and NF-κB significantly reduced HD-induced capase-1 activation and interleukin-1ß maturation, indicating a critical role of NADPH oxidase and downstream MAPK and NF-κB pathways in regulating activation of NLRP3 inflammasome, in HD-treated microglia. Finally, we found that inhibition of microglial NLRP3 inflammasome and NADPH oxidase activation abrogated HD-induced microglial activation and neurodegeneration in both SHSY5Y neuronal cells and primary cortical neuron-glia cultures. Altogether, our findings suggest that NADPH oxidase-dependent activation of microglial NLRP3 inflammasome contributes to HD-induced neurotoxicity, providing novel insight into the mechanisms of this solvent-induced neuropathy.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Hexanonas , Interleucina-1beta/genética , NADPH Oxidasas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Oxidorreductasas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...