Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39023360

RESUMEN

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Asunto(s)
Antiprotozoarios , Antiprotozoarios/farmacología , Antiprotozoarios/química , Esfingolípidos/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Leishmania/efectos de los fármacos , Leishmania/genética , Leishmania/enzimología , Animales , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Glicoesfingolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
2.
J Lipid Res ; 65(8): 100584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925252

RESUMEN

Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.


Asunto(s)
Ceramidas , Glucosiltransferasas , Aparato de Golgi , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingolípidos , Aparato de Golgi/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Humanos , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Cromatografía Líquida de Alta Presión , Células HeLa , Hexosiltransferasas/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
3.
EBioMedicine ; 74: 103712, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34839261

RESUMEN

BACKGROUND: Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants. METHODS: We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-κB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells. FINDINGS: The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity. INTERPRETATION: Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Benzamidas/farmacología , Tratamiento Farmacológico de COVID-19 , Glicosilación/efectos de los fármacos , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Sulfonamidas/farmacología , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Células HEK293 , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/crecimiento & desarrollo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Arch Virol ; 164(11): 2789-2792, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31414286

RESUMEN

Replication of the dengue virus (DENV) genome occurs in a vesicle in the endoplasmic reticulum by a complex of host and viral proteins. Two host proteins, STT3A and STT3B, as members of the oligosaccharyl transferase complex, have been implicated in playing structural roles in the vesicle in mammalian cells, and the absence of these proteins has been shown to decrease DENV replication. Aedes aegypti is the main vector of the virus and has been used previously as a model organism to study mosquito-virus interactions. In this study, we found that genes of the oligosaccharyl transferase complex have no effect on replication of DENV in mosquito cells.


Asunto(s)
Aedes/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Replicación Viral/genética , Animales , Benzamidas/farmacología , Línea Celular , Chlorocebus aethiops , Dengue/virología , Retículo Endoplásmico/virología , Genoma Viral/genética , Glicosilación , Hexosiltransferasas/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Proteínas de la Membrana/antagonistas & inhibidores , ARN Viral/genética , Sulfonamidas/farmacología , Células Vero
5.
Sci Rep ; 9(1): 8083, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147620

RESUMEN

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Herbicidas/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pruebas de Enzimas , Técnicas de Inactivación de Genes , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Plantones/efectos de los fármacos
6.
FASEB J ; 33(6): 6801-6812, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30811219

RESUMEN

Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.


Asunto(s)
Benzamidas/farmacología , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Chlorocebus aethiops , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Glicosilación , Células HEK293 , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Células Vero
7.
Clin Cancer Res ; 25(2): 784-795, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29967251

RESUMEN

PURPOSE: Parallel signaling reduces the effects of receptor tyrosine kinase (RTK)-targeted therapies in glioma. We hypothesized that inhibition of protein N-linked glycosylation, an endoplasmic reticulum co- and posttranslational modification crucial for RTK maturation and activation, could provide a new therapeutic approach for glioma radiosensitization.Experimental Design: We investigated the effects of a small-molecule inhibitor of the oligosaccharyltransferase (NGI-1) on EGFR family receptors, MET, PDGFR, and FGFR1. The influence of glycosylation state on tumor cell radiosensitivity, chemotherapy-induced cell toxicity, DNA damage, and cell-cycle arrest were determined and correlated with glioma cell receptor expression profiles. The effects of NGI-1 on xenograft tumor growth were tested using a nanoparticle formulation validated by in vivo molecular imaging. A mechanistic role for RTK signaling was evaluated through the expression of a glycosylation-independent CD8-EGFR chimera. RESULTS: NGI-1 reduced glycosylation, protein levels, and activation of most RTKs. NGI-1 also enhanced the radiosensitivity and cytotoxic effects of chemotherapy in those glioma cells with elevated ErbB family activation, but not in cells without high levels of RTK activation. NGI-1 radiosensitization was associated with increases in both DNA damage and G1 cell-cycle arrest. Combined treatment of glioma xenografts with fractionated radiotherapy and NGI-1 significantly reduced tumor growth compared with controls. Expression of the CD8-EGFR eliminated the effects of NGI-1 on G1 arrest, DNA damage, and cellular radiosensitivity, identifying RTK inhibition as the principal mechanism for the NGI-1 effect. CONCLUSIONS: This study suggests that oligosaccharyltransferase inhibition with NGI-1 is a novel approach to radiosensitize malignant gliomas with enhanced RTK signaling.See related commentary by Wahl and Lawrence, p. 455.


Asunto(s)
Glioma/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Tolerancia a Radiación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Receptores ErbB/metabolismo , Glioma/patología , Glioma/radioterapia , Humanos , Ratones , Tolerancia a Radiación/genética , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sci Rep ; 8(1): 16297, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389987

RESUMEN

Oligosaccharyltransferase (OST) is a key enzyme of the N-glycosylation pathway, where it catalyzes the transfer of a glycan from a lipid-linked oligosaccharide (LLO) to an acceptor asparagine within the conserved sequon N-X-T/S. A previous structure of a ternary complex of bacterial single subunit OST, PglB, bound to a non-hydrolyzable LLO analog and a wild type acceptor peptide showed how both substrates bind and how an external loop (EL5) of the enzyme provided specific substrate-binding contacts. However, there was a relatively large separation of the substrates at the active site. Here we present the X-ray structure of PglB bound to a reactive LLO analog and an inhibitory peptide, revealing previously unobserved interactions in the active site. We found that the atoms forming the N-glycosidic bond (C-1 of the GlcNAc moiety of LLO and the -NH2 group of the peptide) are closer than in the previous structure, suggesting that we have captured a conformation closer to the transition state of the reaction. We find that the distance between the divalent metal ion and the glycosidic oxygen of LLO is now 4 Å, suggesting that the metal stabilizes the leaving group of the nucleophilic substitution reaction. Further, the carboxylate group of a conserved aspartate of PglB mediates an interaction network between the reducing-end sugar of the LLO, the asparagine side chain of the acceptor peptide, and a bound divalent metal ion. The interactions identified in this novel state are likely to be relevant in the catalytic mechanisms of all OSTs.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Campylobacter lari/enzimología , Hexosiltransferasas/ultraestructura , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Péptidos/farmacología , Unión Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
9.
Cell Chem Biol ; 25(10): 1231-1241.e4, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30078634

RESUMEN

The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.


Asunto(s)
Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Sulfonamidas/química , Sulfonamidas/farmacología , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Técnicas de Inactivación de Genes , Células HEK293 , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Relación Estructura-Actividad
10.
Org Lett ; 20(15): 4637-4640, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30035548

RESUMEN

X-ray analysis and total synthesis of 1 unambiguously confirmed pleofingin A's absolute configuration. The total synthesis was achieved by convergent assembly of three fragments (12, 14, and 18). This synthetic approach provides access to derivatives of 1 to search for antifungal agents that will be more effective in clinical use.


Asunto(s)
Antifúngicos/síntesis química , Depsipéptidos/síntesis química , Glicoesfingolípidos/química , Hexosiltransferasas/antagonistas & inhibidores , Cristalización , Ciclización , Concentración 50 Inhibidora , Estructura Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Relación Estructura-Actividad
11.
Cancer Res ; 78(17): 5094-5106, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30026325

RESUMEN

Asparagine (N)-linked glycosylation is a posttranslational modification essential for the function of complex transmembrane proteins. However, targeting glycosylation for cancer therapy has not been feasible due to generalized effects on all glycoproteins. Here, we perform sensitivity screening of 94 lung cancer cell lines using NGI-1, a small-molecule inhibitor of the oligosaccharyltransferase (OST) that partially disrupts N-linked glycosylation, and demonstrate a selective loss of tumor cell viability. This screen revealed NGI-1 sensitivity in just 11 of 94 (12%) cell lines, with a significant correlation between OST and EGFR inhibitors. In EGFR-mutant non-small cell lung cancer with EGFR tyrosine kinase inhibitor (TKI) resistance (PC9-GR, HCC827-GR, and H1975-OR), OST inhibition maintained its ability to induce cell-cycle arrest and a proliferative block. Addition of NGI-1 to EGFR TKI treatment was synthetic lethal in cells resistant to gefitinib, erlotinib, or osimertinib. OST inhibition invariably disrupted EGFR N-linked glycosylation and reduced activation of receptors either with or without the T790M TKI resistance mutation. OST inhibition also dissociated EGFR signaling from other coexpressed receptors like MET via altered receptor compartmentalization. Translation of this approach to preclinical models was accomplished through synthesis and delivery of NGI-1 nanoparticles, confirmation of in vivo activity through molecular imaging, and demonstration of significant tumor growth delay in TKI-resistant HCC827 and H1975 xenografts. This therapeutic strategy breaks from kinase-targeted approaches and validates N-linked glycosylation as an effective target in tumors driven by glycoprotein signaling.Significance:EGFR-mutant NSCLC is incurable despite the marked sensitivity of these tumors to EGFR TKIs. These findings identify N-linked glycosylation, a posttranslational modification common to EGFR and other oncogenic signaling proteins, as an effective therapeutic target that enhances tumor responses for EGFR-mutant NSCLC. Cancer Res; 78(17); 5094-106. ©2018 AACR.


Asunto(s)
Benzamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Sulfonamidas/farmacología , Células A549 , Animales , Apoptosis/efectos de los fármacos , Benzamidas/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib/efectos adversos , Gefitinib/uso terapéutico , Hexosiltransferasas/antagonistas & inhibidores , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Mutación/efectos de los fármacos , Nanopartículas/química , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/química , Ensayos Antitumor por Modelo de Xenoinjerto
12.
FEMS Microbiol Lett ; 365(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29240942

RESUMEN

Sphingolipids are essential for normal cell growth of yeast Saccharomyces cerevisiae. Aureobasidin A (AbA), an antifungal drug, inhibits Aur1, an enzyme catalyzing the synthesis of inositol phosphorylceramide, and induces a strong growth defect in yeast. In this study, we screened for multicopy suppressor genes that confer resistance to AbA, and identified PDR16. In addition, it was found that PDR17, a paralog of PDR16, also functions as a multicopy suppressor. Pdr16 and Pdr17 belong to a family of phosphatidylinositol transfer proteins; however, cells overexpressing the other members of the family hardly exhibited resistance to AbA. Overexpression of a lipid-binding defective mutant of Pdr16 did not confer the resistance to AbA, indicating that the lipid-binding activity is essential for acquiring resistance to AbA. When expression of the AUR1 gene was repressed by a tetracycline-regulatable promoter, the overexpression of PDR16 or PDR17 did not suppress the growth defect caused by the AUR1 repression. Quantification analysis of complex sphingolipids revealed that in AbA-treated cells, but not in cells in which AUR1 was repressed by the tetracycline-regulatable promoter, the reductions of complex sphingolipid levels were suppressed by the overexpressed PDR16. Thus, it was indicated that the overexpression of PDR16 reduces the effectiveness of AbA against intracellular Aur1 activity.


Asunto(s)
Proteínas Portadoras/genética , Depsipéptidos/farmacología , Farmacorresistencia Fúngica/genética , Expresión Génica , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Antifúngicos/farmacología , Proteínas Portadoras/metabolismo , Glicoesfingolípidos/biosíntesis , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Mutación/genética , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell Rep ; 21(11): 3032-3039, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241533

RESUMEN

The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Virus del Dengue/efectos de los fármacos , Hexosiltransferasas/genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Proteínas de la Membrana/genética , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos , Virus del Dengue/genética , Virus del Dengue/crecimiento & desarrollo , Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/deficiencia , Humanos , Luciferasas , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Pruebas de Sensibilidad Microbiana , Transducción de Señal , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/crecimiento & desarrollo , Virus de la Fiebre Amarilla/efectos de los fármacos , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus Zika/efectos de los fármacos , Virus Zika/genética , Virus Zika/crecimiento & desarrollo
14.
Glycobiology ; 27(9): 820-833, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810664

RESUMEN

Phosphoglycosyl transferases (PGTs) initiate the biosynthesis of both essential and virulence-associated bacterial glycoconjugates including lipopolysaccharide, peptidoglycan and glycoproteins. PGTs catalyze the transfer of a phosphosugar moiety from a nucleoside diphosphate sugar to a polyprenol phosphate, to form a membrane-bound polyprenol diphosphosugar product. PGTs are integral membrane proteins, which include between 1 and 11 predicted transmembrane domains. Despite this variation, common motifs have been identified in PGT families through bioinformatics and mutagenesis studies. Bacterial PGTs represent important antibacterial and virulence targets due to their significant role in initiating the biosynthesis of key bacterial glycoconjugates. Considerable effort has gone into mechanistic and inhibition studies for this class of enzymes, both of which depend on reliable, high-throughput assays for easy quantification of activity. This review summarizes recent advances made in the characterization of this challenging but important class of enzymes.


Asunto(s)
Membrana Celular/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Glicoconjugados/biosíntesis , Hexosiltransferasas/metabolismo , Metabolismo de los Hidratos de Carbono , Membrana Celular/química , Secuencia Conservada , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Glicoconjugados/química , Glicoconjugados/genética , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/genética , Ensayos Analíticos de Alto Rendimiento , Cinética , Dominios Proteicos , Especificidad por Sustrato
15.
Proteomics ; 16(23): 2977-2988, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27717196

RESUMEN

A new acridone derivative 2-aminoacetamido-10-(3, 5-dimethoxy)-benzyl-9(10H)-acridone hydrochloride (8a) has been shown to have potent antitumor activity. In order to understand the underlying action mechanism of 8a, three compounds of the same class with structures optimized step-by-step, 9(10H)-acridone (A), 10-(3,5-dimethoxy) benzyl-9(10H)-acridone (I) and 8a, were exposed to CCRF-CEM leukemia cell to determine the N-glycosylation changes using the microfluidic HPLC-chip-TOF MS platform. N-Glycans from whole cell lysates (WCL) and cell membranes (CM) were analyzed using isomer-sensitive chip-based porous graphitized carbon nano-LC/MS. A total of 223 N-glycan compositions and 398 N-glycan compounds were identified. Comparison of the two analyses showed that more apparent changes were observed in the CM compared with WCL, suggesting that CM may be a more sensitive indicator of changes in glycosylation. Upon 8a exposure to CCRF-CEM cells, a significant decrease in high-mannose-type glycans was observed. Different expressions of oligosaccharyltransferase subunits appear to play a key functional role in regulating the hypoglycosylation and contribute to the action mechanism of 8a. Taken together our findings suggest that glycosylation is strongly affected by therapeutic potency and can be used as possible biomarkers for monitoring toxicity and antitumor activity of 8a.


Asunto(s)
Acridonas/farmacología , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Polisacáridos/análisis , Línea Celular Tumoral , Glicómica/instrumentación , Glicómica/métodos , Glicosilación/efectos de los fármacos , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/metabolismo , Humanos , Leucemia/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Modelos Teóricos , Polisacáridos/química , Proteómica/métodos
16.
Nat Chem Biol ; 12(12): 1023-1030, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694802

RESUMEN

Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high-throughput screen and lead-compound-optimization campaign that delivered a cell-permeable inhibitor, NGI-1. NGI-1 targets oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.


Asunto(s)
Benzamidas/farmacología , Senescencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sulfonamidas/farmacología , Benzamidas/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Hexosiltransferasas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/metabolismo , Estructura Molecular , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química
17.
Bioprocess Biosyst Eng ; 38(12): 2417-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437965

RESUMEN

Experimental investigations were made to synthesize fructo-oligosaccharides (FOS) from sucrose using fructosyltransferase. The influence of various parameters such as temperature (45-55 °C), pH (4-5), initial sucrose concentration (ISC: 300-500 g/L) and enzyme concentration (4-32 U/mL) were varied. A maximum FOS yield of 60% was observed at ISC 500 g/L, pH 4.5 with enzyme activity 32 U/mL and at 55 °C. It was confirmed that 1-kestose (tri-) was the major product of FOS as compared to nystose (tetra-) and fructosylnystose (penta-saccharides). Further, the reaction rate increases with increase in temperature. From separate sets of experiments, it was observed that FOS formation was affected by glucose inhibition. Apart from the increase in the rate of FOS formation with increasing enzyme activity, the final values of FOS yield increase though till 16 U/mL and thereafter attain plateau. A kinetic model was also developed, based on Michaelis-Menten kinetics, and a five-step ten-parameter model, including glucose inhibition, was obtained. Model was solved using COPASI(®) (version 4.8) solver for kinetic parameter estimations followed by time course simulations.


Asunto(s)
Hexosiltransferasas/metabolismo , Modelos Biológicos , Oligosacáridos/biosíntesis , Aspergillus/enzimología , Cromatografía Líquida de Alta Presión , Hexosiltransferasas/antagonistas & inhibidores , Concentración de Iones de Hidrógeno , Cinética , Temperatura
18.
Eukaryot Cell ; 14(12): 1203-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26432633

RESUMEN

Inositolphosphorylceramide (IPC) and its mannosylated derivatives are the only complex sphingolipids of yeast. Their synthesis can be reduced by aureobasidin A (AbA), which specifically inhibits the IPC synthase Aur1. AbA reportedly, by diminishing IPC levels, causes endoplasmic reticulum (ER) stress, an increase in cytosolic calcium, reactive oxygen production, and mitochondrial damage leading to apoptosis. We found that when Aur1 is gradually depleted by transcriptional downregulation, the accumulation of ceramides becomes a major hindrance to cell survival. Overexpression of the alkaline ceramidase YPC1 rescues cells under this condition. We established hydroxylated C26 fatty acids as a reliable hallmark of ceramide hydrolysis. Such hydrolysis occurs only when YPC1 is overexpressed. In contrast, overexpression of YPC1 has no beneficial effect when Aur1 is acutely repressed by AbA. A high-throughput genetic screen revealed that vesicle-mediated transport between Golgi apparatus, endosomes, and vacuole becomes crucial for survival when Aur1 is repressed, irrespective of the mode of repression. In addition, vacuolar acidification becomes essential when cells are acutely stressed by AbA, and quinacrine uptake into vacuoles shows that AbA activates vacuolar acidification. The antioxidant N-acetylcysteine does not improve cell growth on AbA, indicating that reactive oxygen radicals induced by AbA play a minor role in its toxicity. AbA strongly induces the cell wall integrity pathway, but osmotic support does not improve the viability of wild-type cells on AbA. Altogether, the data support and refine current models of AbA-mediated cell death and add vacuolar protein transport and acidification as novel critical elements of stress resistance.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Hexosiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Vesículas Transportadoras/metabolismo , Vacuolas/metabolismo , Alelos , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Ceramidas/metabolismo , Depsipéptidos/farmacología , Doxiciclina/farmacología , Epistasis Genética/efectos de los fármacos , Eliminación de Gen , Ontología de Genes , Pruebas Genéticas , Aparato de Golgi/efectos de los fármacos , Hexosiltransferasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Hidrólisis , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Mutación/genética , Quinacrina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/biosíntesis , Vesículas Transportadoras/efectos de los fármacos , Vacuolas/efectos de los fármacos
19.
J Gen Appl Microbiol ; 61(4): 108-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26377130

RESUMEN

Inositol phosphorylceramide (IPC) synthase is the key enzyme with highly conserved sequences, which is involved in fungal sphingolipid biosynthesis. The antibiotic aureobasidin A (AbA) induces the death of fungi through inhibiting IPC synthase activity. The mutations of AUR1 gene coding IPC synthase in fungi and protozoa causes a resistance to AbA. However, the mechanism of AbA resistance is still elusive. In this paper, we generated two mutants of Botrytis cinerea with AbA-resistance, BcAUR1a and BcAUR1b, through UV irradiation. BcAUR1a lost an intron and BcAUR1b had three amino acid mutations (L197P, F288S and T323A) in the AUR1 gene. AbA strongly inhibits the activity of IPC synthase in wild-type B. cinerea, which leads to distinct changes in cell morphology, including the delay in conidial germination, excessive branching near the tip of the germ tube and mycelium, and the inhibition of the mycelium growth. Further, AbA prevents the infection of wild-type B. cinerea in tomato fruits via reducing oxalic acid secretion and the activity of cellulase and pectinase. On the contrary, AbA has no effect on the growth and pathogenicity of the two mutants. Although both mutants show a similar AbA resistance, the molecular mechanisms might be different between the two mutants.


Asunto(s)
Antifúngicos/farmacología , Botrytis/enzimología , Botrytis/crecimiento & desarrollo , Depsipéptidos/farmacología , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Botrytis/efectos de los fármacos , Botrytis/patogenicidad , Depsipéptidos/antagonistas & inhibidores , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Hexosiltransferasas/antagonistas & inhibidores , Mutación , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/ultraestructura , Alineación de Secuencia , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología , Esporas Fúngicas/ultraestructura
20.
Biotechnol Appl Biochem ; 62(6): 815-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25524717

RESUMEN

An intracellular levansucrase from Bacillus methylotrophicus SK 21.002 was isolated, purified, and characterized. The final specific levansucrase activity was 135.40 U/mg protein with an 11.78-fold enrichment and a 9.28% recovery rate. The molecular weight of the enzyme was approximately 60,000 Da as evaluated by gel filtration and SDS-PAGE. Both the maximum transfructosylation and hydrolytic activities were observed at pH 6.5. The enzyme exhibited optimum transfructosylation activity at 40 °C, whereas the optimum temperature of hydrolytic activity was 45 °C. Cu(2+), Fe(2+), Zn(2+), and Ni(2+) inhibited both the transfructosylation and hydrolytic activities up to 100%, whereas Mn(2+) inhibited only hydrolytic activity. Ca(2+) and Mg(2+) stimulated both transfructosylation and hydrolytic activities. The chemical modifiers (n-bromosuccinimide and phenylmethanesulfonyl fluoride) strongly inhibited hydrolytic and transfructosylation activity of the levansucrase. The Km and Vmax values of the purified levansucrase were 117.2 mM and 33.23 µmol/mg·Min, respectively. When the fructose concentration was below 0.2 M, higher fructose concentrations promoted the transfructosylation and inhibited the hydrolytic activity.


Asunto(s)
Bacillus/citología , Hexosiltransferasas/aislamiento & purificación , Hexosiltransferasas/metabolismo , Espacio Intracelular/enzimología , Animales , Bacillus/enzimología , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Fructosa/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Metales/farmacología , Peso Molecular , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...