Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14872, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913242

RESUMEN

Flavin-based electron bifurcation is a long hidden mechanism of energetic coupling present mainly in anaerobic bacteria and archaea that suffer from energy limitations in their environment. Electron bifurcation saves precious cellular ATP and enables lithotrophic life of acetate-forming (acetogenic) bacteria that grow on H2 + CO2 by the only pathway that combines CO2 fixation with ATP synthesis, the Wood-Ljungdahl pathway. The energy barrier for the endergonic reduction of NADP+, an electron carrier in the Wood-Ljungdahl pathway, with NADH as reductant is overcome by an electron-bifurcating, ferredoxin-dependent transhydrogenase (Nfn) but many acetogens lack nfn genes. We have purified a ferredoxin-dependent NADH:NADP+ oxidoreductase from Sporomusa ovata, characterized the enzyme biochemically and identified the encoding genes. These studies led to the identification of a novel, Sporomusa type Nfn (Stn), built from existing modules of enzymes such as the soluble [Fe-Fe] hydrogenase, that is widespread in acetogens and other anaerobic bacteria.


Asunto(s)
Acetobacterium/enzimología , Proteínas Bacterianas/metabolismo , Ferredoxinas/metabolismo , Firmicutes/enzimología , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Acetobacterium/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Transporte de Electrón , Electrones , Firmicutes/genética , Hidrogenasas/genética , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Oxidación-Reducción , Homología de Secuencia de Aminoácido
2.
J Microbiol ; 57(12): 1095-1104, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31758395

RESUMEN

Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]-hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.


Asunto(s)
Sedimentos Geológicos/microbiología , Hidrógeno/metabolismo , Metagenoma , Microbiota/fisiología , Regiones Antárticas , Archaea/clasificación , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Ciclo del Carbono , Crecimiento Quimioautotrófico , Comamonadaceae/enzimología , Comamonadaceae/metabolismo , Genes Arqueales/genética , Genes Bacterianos/genética , Hidrogenasas/clasificación , Hidrogenasas/genética , Hidrogenasas/aislamiento & purificación , Redes y Vías Metabólicas , Microbiota/genética , Nitratos/metabolismo , Fosforilación Oxidativa , Fotosíntesis , Análisis de Secuencia de ADN
3.
Methods Enzymol ; 613: 203-230, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509467

RESUMEN

Algal hydrogenases are among to the most efficient hydrogen (H2) generating biocatalysts and use low-potential electrons from the photosynthetic light reactions. Thereby, photobiological H2 evolution by eukaryotic microalgae represents a sustainable alternative to the energy intensive industrial production of H2 based on fossil fuels. Novel algal hydrogenases are still being discovered and their biochemical and biophysical characterization has revealed unique features beneficial to overcome bottlenecks in photobiological H2 production. Highly advanced techniques are available to study hydrogenases to atomic level accuracy. Yet, to benefit from these methods, one has to overcome the first and most fundamental obstacle, namely, obtaining sufficient amounts of active hydrogenase enzyme. The recombinant production of hydrogenases can be very challenging, so this chapter provides information and useful advice for the discovery, heterologous production, and analyses of hydrogenases from microalgae.


Asunto(s)
Chlorophyta/enzimología , Hidrogenasas/aislamiento & purificación , Hidrogenasas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química
4.
Protein Eng Des Sel ; 31(9): 337-344, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358873

RESUMEN

The NADPH-dependent cytoplasmic [NiFe]-hydrogenase (SHI) from the hyperthermophile Pyrococcus furiosus, which grows optimally near 100°C, is extremely thermostable and has many in vitro applications, including cofactor generation and hydrogen production. In particular, SHI is used in a cell-free synthetic pathway that contains more than a dozen other enzymes and produces three times more hydrogen (12 H2/glucose) from sugars compared to cellular fermentations (4 H2/glucose). We previously reported homologous over-expression and rapid purification of an affinity-tagged (9x-His) version of SHI, which is a heterotetrameric enzyme. However, about 30% of the enzyme that was purified contained an inactive trimeric form of SHI lacking the catalytic [NiFe]-containing subunit. Herein, we constructed a strain of P. furiosus that contained a second set of the eight genes involved in the maturation of the catalytic subunit and insertion of the [NiFe]-site, along with a second set of the four genes encoding the SHI structural subunits. This resulted in a 40% higher yield of the purified affinity-tagged enzyme and the content of the inactive trimeric form decreased to 5% of the total protein. These results bode well for the future production of active SHI for both basic and applied purposes.


Asunto(s)
Hidrogenasas/genética , Pyrococcus furiosus/genética , Proteínas Recombinantes de Fusión/genética , Reactores Biológicos , Cromatografía de Afinidad , Hidrogenasas/aislamiento & purificación , Hidrogenasas/metabolismo , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
5.
Dalton Trans ; 47(31): 10685-10691, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29881850

RESUMEN

In this work we present a viologen-modified electrode providing protection for hydrogenases against high potential inactivation. Hydrogenases, including O2-tolerant classes, suffer from reversible inactivation upon applying high potentials, which limits their use in biofuel cells to certain conditions. Our previously reported protection strategy based on the integration of hydrogenase into redox matrices enabled the use of these biocatalysts in biofuel cells even under anode limiting conditions. However, mediated catalysis required application of an overpotential to drive the reaction, and this translates into a power loss in a biofuel cell. In the present work, the enzyme is adsorbed on top of a covalently-attached viologen layer which leads to mixed, direct and mediated, electron transfer processes; at low overpotentials, the direct electron transfer process generates a catalytic current, while the mediated electron transfer through the viologens at higher potentials generates a redox buffer that prevents oxidative inactivation of the enzyme. Consequently, the enzyme starts the catalysis at no overpotential with viologen self-activated protection at high potentials.


Asunto(s)
Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Viológenos/química , Fuentes de Energía Bioeléctrica , Carbono/química , Catálisis , Desulfovibrio desulfuricans/metabolismo , Dinitroclorobenceno/análogos & derivados , Dinitroclorobenceno/química , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/aislamiento & purificación , Enzimas Inmovilizadas/metabolismo , Oro/química , Hidrogenasas/aislamiento & purificación , Conformación Molecular , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Piridinas/química , Viológenos/síntesis química
6.
Biochim Biophys Acta Bioenerg ; 1858(9): 771-778, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647463

RESUMEN

Hydrogenases from green algae are linked to the photosynthetic electron transfer chain via the plant-type ferredoxin PetF. In this work the [FeFe]-hydrogenase from the Trebouxiophycean alga Chlorella variabilis NC64A (CvHydA1), which in contrast to other green algal hydrogenases contains additional FeS-cluster binding domains, was purified and specific enzyme activities for both hydrogen (H2) production and H2 oxidation were determined. Interestingly, although C. variabilis NC64A, like many Chlorophycean algal strains, exhibited light-dependent H2 production activity upon sulfur deprivation, CvHydA1 did not interact in vitro with several plant-type [2Fe-2S]-ferredoxins, but only with a bacterial2[4Fe4S]-ferredoxin. In an electrochemical characterization, the enzyme exhibited features typical of bacterial [FeFe]-hydrogenases (e.g. minor anaerobic oxidative inactivation), as well as of algal enzymes (very high oxygen sensitivity).


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorella/enzimología , Ferredoxinas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/aislamiento & purificación , Secuencia de Aminoácidos , Monóxido de Carbono/farmacología , Chlamydomonas reinhardtii/química , Chlorella/efectos de la radiación , Técnicas Electroquímicas , Transporte de Electrón , Hidrógeno/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Luz , Modelos Moleculares , Oxidación-Reducción , Oxígeno/farmacología , Fotosíntesis , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Azufre/metabolismo
7.
J Am Chem Soc ; 139(28): 9544-9550, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28635269

RESUMEN

An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Protones , Termodinámica , Biocatálisis , Clostridium/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Potenciometría
8.
Bioelectrochemistry ; 109: 9-23, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26774688

RESUMEN

The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1 M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35 mV 24 h after the injection of 300 µL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5 mM dithionite, 7.5 mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests.


Asunto(s)
Biotina/análogos & derivados , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/metabolismo , Ditionita/metabolismo , Ditiotreitol/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Acero/química , Biotina/metabolismo , Clostridium acetobutylicum/química , Corrosión , Técnicas Electroquímicas , Diseño de Equipo , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación
9.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 1): 53-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26750485

RESUMEN

The purification procedure of Hyd-2-type [NiFe]-hydrogenase from Citrobacter sp. S-77 was improved by applying treatment with trypsin before chromatography. Purified protein samples both with and without trypsin treatment were successfully crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol as a precipitant. Both crystals belonged to space group P21, with unit-cell parameters a = 63.90, b = 118.89, c = 96.70 Å, ß = 100.61° for the protein subjected to trypsin treatment and a = 65.38, b = 121.45, c = 98.63 Å, ß = 102.29° for the sample not treated with trypsin. The crystal obtained from the trypsin-treated protein diffracted to 1.60 Šresolution, which is considerably better than the 2.00 Šresolution obtained without trypsin treatment. The [NiFe]-hydrogenase from Citrobacter sp. S-77 retained catalytic activity with some amount of O2, indicating that it has clear O2 tolerance.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Citrobacter/enzimología , Hidrogenasas/aislamiento & purificación , Proteínas Bacterianas/química , Cromatografía de Afinidad , Cristalización/métodos , Cristalografía por Rayos X , Hidrógeno/química , Hidrogenasas/química , Cinética , Oxígeno/química
10.
Biotechnol Appl Biochem ; 63(3): 305-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25851509

RESUMEN

This paper reports the first characterization of an [FeFe]-hydrogenase from a Clostridium perfringens strain previously isolated in our laboratory from a pilot-scale bio-hydrogen plant that efficiently produces H2 from waste biomasses. On the basis of sequence analysis, the enzyme is a monomer formed by four domains hosting various iron-sulfur centres involved in electron transfer and the catalytic center H-cluster. After recombinant expression in Escherichia coli, the purified protein catalyzes H2 evolution at high rate of 1645 ± 16 s(-1) . The optimal conditions for catalysis are in the pH range 6.5-8.0 and at the temperature of 50 °C. EPR spectroscopy showed that the H-cluster of the oxidized enzyme displays a spectrum coherent with the Hox state, whereas the CO-inhibited enzyme has a spectrum coherent with the Hox -CO state. FTIR spectroscopy showed that the purified enzyme is composed of a mixture of redox states, with a prevalence of the Hox ; upon reduction with H2 , vibrational modes assigned to the Hred state were more abundant, whereas binding of exogenous CO resulted in a spectrum assigned to the Hox -CO state. The spectroscopic features observed are similar to those of the [FeFe]-hydrogenases class, but relevant differences were observed given the different protein environment hosting the H-cluster.


Asunto(s)
Clostridium perfringens/enzimología , Hidrogenasas/aislamiento & purificación , Hidrogenasas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Clonación Molecular , Clostridium perfringens/genética , Escherichia coli/genética , Hidrogenasas/química , Hidrogenasas/genética , Modelos Moleculares , Conformación Proteica , Análisis de Secuencia
11.
Archaea ; 2015: 912582, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26543406

RESUMEN

Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/aislamiento & purificación , Hidrogenasas/metabolismo , Pyrococcus furiosus/enzimología , Hidrogenasas/genética , NADP/metabolismo , Pyrococcus furiosus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
12.
Protein Expr Purif ; 107: 90-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25462812

RESUMEN

The cytoplasmic [NiFe]-hydrogenase I (SHI) of the hyperthermophile Pyrococcus furiosus evolves hydrogen gas (H2) from NADPH. It has been previously used for biohydrogen production from sugars using a mixture of enzymes in an in vitro cell-free synthetic pathway. The theoretical yield (12 H2/glucose) is three times greater than microbial fermentation (4 H2/glucose), making the in vitro approach very promising for large scale biohydrogen production. Further development of this process at an industrial scale is limited by the availability of the H2-producing SHI. To overcome the obstacles of the complex biosynthetic and maturation pathway for the [NiFe] site of SHI, the four gene operon encoding the enzyme was overexpressed in P. furiosus and included a polyhistidine affinity tag. The one-step purification resulted in a 50-fold increase in yield compared to the four-step purification procedure for the native enzyme. A trimeric form was also identified that lacked the [NiFe]-catalytic subunit but catalyzed NADPH oxidation with a specific activity similar to that of the tetrameric form. The presence of an active trimeric intermediate confirms the proposed maturation pathway where, in the terminal step, the NiFe-containing catalytic subunit assembles with NADPH-oxidizing trimeric form to give the active holoenzyme.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Citoplasma/enzimología , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Pyrococcus furiosus/enzimología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Biocatálisis , Dominio Catalítico , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Cinética , NADP/metabolismo , Níquel/metabolismo , Multimerización de Proteína , Pyrococcus furiosus/química , Pyrococcus furiosus/genética
13.
PLoS One ; 9(1): e85812, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465722

RESUMEN

Although significant advances in H2 photoproduction have recently been realized in fresh water algae (e.g. Chlamydomonas reinhardtii), relatively few studies have focused on H2 production and hydrogenase adaptations in marine or halophilic algae. Salt water organisms likely offer several advantages for biotechnological H2 production due to the global abundance of salt water, decreased H2 and O2 solubility in saline and hypersaline systems, and the ability of extracellular NaCl levels to influence metabolism. We screened unialgal isolates obtained from hypersaline ecosystems in the southwest United States and identified two distinct halophilic strains of the genus Tetraselmis (GSL1 and QNM1) that exhibit both robust fermentative and photo H2-production activities. The influence of salinity (3.5%, 5.5% and 7.0% w/v NaCl) on H2 production was examined during anoxic acclimation, with the greatest in vivo H2-production rates observed at 7.0% NaCl. These Tetraselmis strains maintain robust hydrogenase activity even after 24 h of anoxic acclimation and show increased hydrogenase activity relative to C. reinhardtii after extended anoxia. Transcriptional analysis of Tetraselmis GSL1 enabled sequencing of the cDNA encoding the FeFe-hydrogenase structural enzyme (HYDA) and its maturation proteins (HYDE, HYDEF and HYDG). In contrast to freshwater Chlorophyceae, the halophilic Tetraselmis GSL1 strain likely encodes a single HYDA and two copies of HYDE, one of which is fused to HYDF. Phylogenetic analyses of HYDA and concatenated HYDA, HYDE, HYDF and HYDG in Tetraselmis GSL1 fill existing knowledge gaps in the evolution of algal hydrogenases and indicate that the algal hydrogenases sequenced to date are derived from a common ancestor. This is consistent with recent hypotheses that suggest fermentative metabolism in the majority of eukaryotes is derived from a common base set of enzymes that emerged early in eukaryotic evolution with subsequent losses in some organisms.


Asunto(s)
Biotecnología , Chlorophyta/enzimología , Chlorophyta/genética , Evolución Molecular , Hidrogenasas/genética , Salinidad , Aclimatación/efectos de los fármacos , Aclimatación/efectos de la radiación , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Dióxido de Carbono/metabolismo , Recuento de Células , Chlorophyta/efectos de los fármacos , Chlorophyta/efectos de la radiación , Fermentación/efectos de los fármacos , Fermentación/efectos de la radiación , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Hidrógeno/metabolismo , Hidrogenasas/aislamiento & purificación , Luz , Funciones de Verosimilitud , Metaboloma/efectos de los fármacos , Metaboloma/efectos de la radiación , Datos de Secuencia Molecular , Paraquat/farmacología , Filogenia , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/efectos de la radiación
14.
PLoS One ; 8(7): e68812, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861944

RESUMEN

Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD(+)reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)(-1) yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg(-1) were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg(-1). Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology.


Asunto(s)
Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrogenasas/biosíntesis , Hidrogenasas/genética , Técnicas de Cultivo Celular por Lotes , Clonación Molecular , Activación Enzimática , Eliminación de Gen , Expresión Génica , Orden Génico , Vectores Genéticos/genética , Hidrogenasas/aislamiento & purificación , Multimerización de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
15.
Appl Environ Microbiol ; 79(17): 5137-45, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793632

RESUMEN

Recently, a novel group of [NiFe]-hydrogenases has been defined that appear to have a great impact in the global hydrogen cycle. This so-called group 5 [NiFe]-hydrogenase is widespread in soil-living actinobacteria and can oxidize molecular hydrogen at atmospheric levels, which suggests a high affinity of the enzyme toward H2. Here, we provide a biochemical characterization of a group 5 hydrogenase from the betaproteobacterium Ralstonia eutropha H16. The hydrogenase was designated an actinobacterial hydrogenase (AH) and is catalytically active, as shown by the in vivo H2 uptake and by activity staining in native gels. However, the enzyme does not sustain autotrophic growth on H2. The AH was purified to homogeneity by affinity chromatography and consists of two subunits with molecular masses of 65 and 37 kDa. Among the electron acceptors tested, nitroblue tetrazolium chloride was reduced by the AH at highest rates. At 30°C and pH 8, the specific activity of the enzyme was 0.3 µmol of H2 per min and mg of protein. However, an unexpectedly high Michaelis constant (Km) for H2 of 3.6 ± 0.5 µM was determined, which is in contrast to the previously proposed low Km of group 5 hydrogenases and makes atmospheric H2 uptake by R. eutropha most unlikely. Amperometric activity measurements revealed that the AH maintains full H2 oxidation activity even at atmospheric oxygen concentrations, showing that the enzyme is insensitive toward O2.


Asunto(s)
Cupriavidus necator/enzimología , Inhibidores Enzimáticos/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Cupriavidus necator/crecimiento & desarrollo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Cinética , Peso Molecular , Nitroazul de Tetrazolio/metabolismo , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Temperatura
16.
J Bacteriol ; 195(6): 1267-75, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23316038

RESUMEN

Moorella thermoacetica was long the only model organism used to study the biochemistry of acetogenesis from CO(2). Depending on the growth substrate, this Gram-positive bacterium can either form H(2) or consume it. Despite the importance of H(2) in its metabolism, a hydrogenase from the organism has not yet been characterized. We report here the purification and properties of an electron-bifurcating [FeFe]-hydrogenase from M. thermoacetica and show that the cytoplasmic enzyme efficiently catalyzes both H(2) formation and H(2) uptake. The purified heterotrimeric iron-sulfur flavoprotein (HydABC) catalyzed the coupled reduction of ferredoxin (Fd) and NAD(+) with H(2) at 55 °C at pH 7.5 at a specific rate of about 100 µmol min(-1) mg protein(-1) and the reverse reaction, the coupled reduction of protons to H(2) with reduced ferredoxin and NADH, at a specific rate of about 10 µmol min(-1) mg protein(-1) in the stoichiometry Fd(ox) + NAD(+) + 2H(2) Fd(red)(2-) + NADH + 3H(+). When ferredoxin from Clostridium pasteurianum, NAD(+), and the enzyme were incubated at pH 7.0 under 100% H(2) in the gas phase (E(0)' = -414 mV), more than 95% of the ferredoxin (E(0)' = -400 mV) was reduced, which indicated that ferredoxin reduction with H(2) is driven by the exergonic reduction of NAD(+) (E(0)' = -320 mV) with H(2). In the absence of NAD(+), ferredoxin was not reduced. We identified the genes encoding HydABC within the transcriptional unit hydCBAX and mapped the transcription start site.


Asunto(s)
Ferredoxinas/metabolismo , Flavoproteínas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Moorella/enzimología , Biocatálisis , Ferredoxinas/química , Flavoproteínas/genética , Flavoproteínas/aislamiento & purificación , Genes Bacterianos , Hidrógeno/química , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Datos de Secuencia Molecular , Moorella/genética , Moorella/metabolismo , NAD/química , NAD/metabolismo , Sitio de Iniciación de la Transcripción
17.
Appl Environ Microbiol ; 78(24): 8579-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023750

RESUMEN

H(2) generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H(2) from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O(2) sensitive. Certain filamentous cyanobacteria protect nitrogenase from O(2) by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter P(hetN). Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O(2).


Asunto(s)
Anabaena/genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Shewanella/enzimología , Aerobiosis , Expresión Génica , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/aislamiento & purificación , Operón , Regiones Promotoras Genéticas , Proteínas Recombinantes/aislamiento & purificación , Shewanella/genética
18.
J Biol Chem ; 287(37): 31165-71, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22810230

RESUMEN

The Wood-Ljungdahl pathway of anaerobic CO(2) fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD(+) for this reaction. NAD(+) was also reduced but only in the presence of ferredoxin. NAD(+) and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD(+) and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD(+) reduction.


Asunto(s)
Acetobacterium/enzimología , Adenosina Trifosfato , Proteínas Bacterianas , Hidrogenasas , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Ferredoxinas/química , Ferredoxinas/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Hidrogenasas/metabolismo , Oxidación-Reducción
19.
J Biosci Bioeng ; 114(5): 479-84, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22721689

RESUMEN

Hydrogenases are of great interest due to their potential use in H(2)-based technology. However, most hydrogenases are highly sensitive to O(2), which have been the major bottleneck in hydrogenase studies. Here we report an O(2)-stable membrane-bound [NiFe]hydrogenase (MBH) purified from a newly isolated strain, S-77. According to the 16S rRNA gene sequence and phylogenetic analysis of the strain S-77, it belongs to the genus of Citrobacter. In vitro experiments using the cytoplasmic membrane of strain S-77 suggested that a cytochrome b acts as the physiological electron acceptor of the MBH. The purified MBH was composed of a dimer of heterodimers, consisting of two distinct subunits with the molecular weights of 58.5 and 38.5 kDa. The enzyme showed a specific activity for H(2)-oxidation of 661 U/mg, which is 35-fold greater than that for H(2)-production of 18.7 U/mg. Notably, the MBH showed a remarkable O(2)-stability, maintaining almost 95% of its original activity even after incubation for 30 h in air at 4°C. These results suggest that the O(2)-stable MBH may play an important role in the H(2)-metabolic pathway under the aerobic conditions of Citrobacter sp. S-77. This is the first report of the purification and biochemical characterization of an O(2)-stable MBH from the genus of Citrobacter.


Asunto(s)
Citrobacter/enzimología , Hidrogenasas/metabolismo , Membrana Celular/enzimología , Citrobacter/clasificación , Citrobacter/aislamiento & purificación , Estabilidad de Enzimas , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Oxidación-Reducción , Oxígeno/química , Filogenia
20.
PLoS One ; 7(4): e35886, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563413

RESUMEN

BACKGROUND: Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. PRINCIPAL FINDINGS: We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L(-1) of culture from E. coli with specific activities of 1000 U (U = 1 µmol hydrogen evolved mg(-1) min(-1)). SIGNIFICANCE: The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Chlamydomonas reinhardtii/enzimología , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Factor Xa/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Hidrogenasas/genética , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...