Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Toxins (Basel) ; 12(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155765

RESUMEN

Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.


Asunto(s)
Fosfolipasa D/historia , Hidrolasas Diéster Fosfóricas/historia , Venenos de Araña/historia , Animales , Catálisis , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Fosfolipasa D/química , Fosfolipasa D/farmacología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/farmacología , Proteómica , Proteínas Recombinantes/farmacología , Picaduras de Arañas/diagnóstico , Picaduras de Arañas/tratamiento farmacológico , Picaduras de Arañas/enzimología , Venenos de Araña/química , Venenos de Araña/farmacología
3.
Annu Rev Biochem ; 87: 1-21, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925256

RESUMEN

My initial research experience involved studying how bacteria synthesize nucleotide sugars, the donors for the formation of cell wall polysaccharides. During this time, I became aware that mammalian cells also have a surface coat of sugars and was intrigued as to whether these sugars might be arranged in specific sequences that function as information molecules in biologic processes. Thus began a long journey that has taken me from glycan structural analysis and determination of plant lectin-binding preferences to the biosynthesis of Asn-linked oligosaccharides and the mannose 6-phosphate (Man-6-P) lysosomal enzyme targeting pathway. The Man-6-P system represents an early example of a glycan serving as an information molecule in a fundamental cellular function. The remarkable advances in the field of glycobiology since I entered have uncovered scores of additional examples of oligosaccharide-lectin interactions mediating critical biologic processes. It has been a rewarding experience to participate in the efforts that have established a central role for glycans in biology.


Asunto(s)
Glicómica/historia , Proteínas Adaptadoras del Transporte Vesicular/historia , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Manosafosfatos/historia , Manosafosfatos/metabolismo , Redes y Vías Metabólicas , Hidrolasas Diéster Fosfóricas/historia , Hidrolasas Diéster Fosfóricas/metabolismo , Receptor IGF Tipo 2/historia , Receptor IGF Tipo 2/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/historia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...