Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
1.
Protein J ; 43(2): 187-199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491249

RESUMEN

The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.


Asunto(s)
Bacterias , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/química , Bacterias/enzimología , Bacterias/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Int J Biol Macromol ; 266(Pt 2): 131068, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531526

RESUMEN

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ±â€¯0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ±â€¯0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Morfolinas , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Tiosemicarbazonas , Morfolinas/química , Morfolinas/farmacología , Morfolinas/síntesis química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Humanos , Cinética , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/síntesis química , Simulación por Computador , Relación Estructura-Actividad , Ligandos
3.
Eur J Med Chem ; 268: 116286, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432057

RESUMEN

Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Calcificación Fisiológica , Pirofosfatasas
4.
Biochim Biophys Acta Biomembr ; 1866(4): 184292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342362

RESUMEN

Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.


Asunto(s)
Liposomas , Hidrolasas Diéster Fosfóricas , Monoéster Fosfórico Hidrolasas , Fosfatos de Calcio/química , Iones , Liposomas/química , Minerales , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Esfingomielinas , Pirofosfatasas/química , Pirofosfatasas/metabolismo
5.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739813

RESUMEN

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Humanos , Animales , Esfingomielina Fosfodiesterasa , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Ceramidas , Fosfatos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/metabolismo
6.
J Drug Target ; 32(2): 172-185, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38155427

RESUMEN

Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.


Asunto(s)
Terapia por Luz de Baja Intensidad , Nanopartículas del Metal , Venenos de Araña , Animales , Conejos , Hidrolasas Diéster Fosfóricas/química , Oro , Venenos de Araña/química , Eritema , Prednisolona/farmacología , Prednisolona/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
7.
Protein Sci ; 32(12): e4829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921047

RESUMEN

Cyclic di-adenosine monophosphate (c-di-AMP) is a newly identified prokaryotic cyclic dinucleotide second messenger well elucidated in bacteria, while less studied in archaea. Here, we describe the enzymes involved in c-di-AMP metabolism in the hyperthermophilic archaeon Pyrococcus yayanosii. Our results demonstrate that c-di-AMP is synthesized from two molecules of ATP by diadenylate cyclase (DAC) and degraded into pApA and then to AMP by a DHH family phosphodiesterase (PDE). DAC can be activated by a wider variety of ions, using two conserved residues, D188 and E244, to coordinate divalent metal ions, which is different from bacterial CdaA and DisA. PDE possesses a broad substrate spectrum like bacterial DHH family PDEs but shows a stricter base selection between A and G in cyclic dinucleotides hydrolysis. PDE shows differences in substrate binding patches from bacterial counterparts. C-di-AMP was confirmed to exist in Thermococcus kodakarensis cells, and the deletion of the dac or pde gene supports that the synthesis and degradation of c-di-AMP are catalyzed by DAC and PDE, respectively. Our results provide a further understanding of the metabolism of c-di-AMP in archaea.


Asunto(s)
Archaea , Proteínas Bacterianas , Archaea/metabolismo , Proteínas Bacterianas/química , Bacterias/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Iones
8.
Int J Biol Macromol ; 235: 123793, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36828087

RESUMEN

Phosphodiesterases are exonucleases that sequentially hydrolyse phosphodiester bonds of polynucleotides from the 3'-end and release 5-mononucleotides. After more than one decade without any advance in the study of Bothropic phosphodiesterases, we described here the isolation of the first phosphodiesterase from Bothrops jararacussu, which we named Bj-PDE. A five-step column chromatography procedure (size exclusion, hydrophobic interaction, cation exchange, lentil lectin affinity, and blue sepharose affinity) enabled isolation of Bj-PDE with preserved and stable enzymatic activity (bis(p-nitrophenyl) phosphate substrate), Km = 6.9 mM (± 0.7 mM), kcat/Km = 1.7 × 104 M-1 s-1 (± 0.2 × 104 M-1 s-1), MW = 116 kDa (SDS-PAGE), optimum activity around 45 °C at pH 8.0, and stability for 81 days at different storage temperatures (8, -20, and - 80 °C). Ca2+ and Mg2+ ions positively influenced Bj-PDE activity, while EDTA had the opposite action. Zn2+ restored >50 % of enzyme activity after its inhibition by EDTA. The Bj-PDE partial sequence identified by mass spectrometry was very similar to the sequence of BATXPDE1 from Bothrops atrox, which was evolutionarily close to this new PDE. Therefore, our study represents an important progress on the isolation of this minor toxin and sheds new lights on the properties and bioprospection of bothropic phosphodiesterases.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Hidrolasas Diéster Fosfóricas/química , Ácido Edético , Cromatografía
9.
Toxins (Basel) ; 15(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36828423

RESUMEN

Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Animales , Esfingomielinas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Fosfolipasa D/metabolismo , Venenos de Araña/química , Fosfolípidos/metabolismo , Lisofosfatidilcolinas , Arañas/metabolismo
10.
Folia Biol (Praha) ; 69(5-6): 149-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38583176

RESUMEN

Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal
11.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234712

RESUMEN

It was recently revealed that naturally occurring myricetin can inhibit ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which, in turn, can treat ischemic cardiac injury. However, due to myricetin's poor druggability, its further developments are relatively limited, which necessitates the discovery of novel ENPP1-inhibiting myricetin analogs as alternatives. In this study, the binding model of myricetin with ENPP1 was elucidated by molecular docking and molecular dynamics studies. Subsequently, virtual screening on the self-developed flavonoid natural product database (FNPD), led to the identification of two flavonoid glycosides (Cas No: 1397173-50-0 and 1169835-58-8), as potential ENPP1 inhibitors. Docking scores and MM/GBSA binding energies predicted that they might have higher inhibitory effects than myricetin. This study provides a strong foundation for the future development of ischemic cardiac injury drugs.


Asunto(s)
Productos Biológicos , Simulación de Dinámica Molecular , Flavonoides/química , Flavonoides/farmacología , Glicósidos , Humanos , Simulación del Acoplamiento Molecular , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas
12.
Plant Sci ; 325: 111493, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36216295

RESUMEN

The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Proteínas de Plantas , Animales , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Plantas/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Nucleótidos Cíclicos/metabolismo , Plantas/metabolismo
13.
Biochemistry ; 61(17): 1801-1809, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35901269

RESUMEN

Cyclic dinucleotides (CDNs) are signaling molecules involved in the immune response and virulence factor production. CDN cellular levels are fine-tuned by metal-dependent phosphodiesterases (PDEs), among which HD-GYPs make up a subclass of the larger HD-domain protein superfamily. The human pathogen Vibrio cholerae (Vc) encodes nine HD-GYPs, one of which is V-cGAP3 (or VCA0931). V-cGAP3 acts on c-di-GMP and 3'3'c-GAMP, and this activity is related to bacterial infectivity. However, the extant chemical makeup of the V-cGAP3 cofactor and steady state parameters have not been established. Employing electron paramagnetic resonance and Mössbauer spectroscopy in tandem with elemental analyses and activity assays, we demonstrate that V-cGAP3 coordinates different dimetal cofactors with variable activities. MnII and FeII afford c-di-GMP hydrolysis with the highest observed rates, while c-GAMP hydrolysis is selectively dependent on Mn. V-cGAP3 has a single functional domain, and this simple architecture allows us to examine the roles of characteristic conserved residues in catalysis. Substitution of the adjacent to the active site GYP residue triad and the specifically conserved in HD-domain PDEs fifth histidine ligand (i.e., H371 in V-cGAP3) with alanines severely compromises CDN hydrolysis but only modestly affects cofactor incorporation. Our data are consistent with V-cGAP3 being the major regulator of 3'3'c-GAMP hydrolysis in Vc and delineate the importance of specific residues in tuning activity in HD-GYPs in general. We propose that HD-GYPs exhibit diversity in their metallocofactors and substrates, which may serve to increase their functional potential in regulatory pathways or allow for PDE activity upon adaptation of the parent organism to diverse environmental niches.


Asunto(s)
Vibrio cholerae , Proteínas Bacterianas/química , Dominio Catalítico , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Hidrolasas Diéster Fosfóricas/química , Vibrio cholerae/química
14.
J Colloid Interface Sci ; 627: 459-468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35868041

RESUMEN

Four novel long chain-containing tridentate imidazole derivatives (Ln, n = 1, 2, 3, 4) were synthesized for in situ formation of mononuclear lanthanum(III) complexes as artificial phosphodiesterases. These in-situ formed La(III) complexes (named LaLn) were used to catalyze the transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP), a classic RNA model. Critical aggregation concentrations (CAC) were determined for the as-prepared tridentate imidazole derivatives as ligands and corresponding mixtures of equivalent ligand and La3+ ion with a mole rate of 1:1. It denotes that the introduction of La3+ ion increases the CAC values of imidazole derivatives by about 2 to 3 folds. Foaming test shows that the foam height is positively correlated with the length of hydrophobic chain. Transesterification of HPNP mediated by LaLn nanoarchitectonics indicates that the introducing of hydrophobic chain benefits rate enhancement, showing excess three orders of magnitude acceleration under physiological conditions (pH 7.0, 25 °C). Moreover, catalytic reactivities of these La(III) complexes increased along with the increase in chain length: LaL1 < LaL2 < LaL3 < LaL4, suggesting a positive correlation to hydrophobic chain length.


Asunto(s)
Lantano , Monoéster Fosfórico Hidrolasas , Imidazoles/química , Lantano/química , Ligandos , Hidrolasas Diéster Fosfóricas/química , ARN/química
15.
Molecules ; 27(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458631

RESUMEN

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Asunto(s)
Nucleósidos , Hidrolasas Diéster Fosfóricas , Humanos , Ligandos , Nucleósidos/farmacología , Hidrolasas Diéster Fosfóricas/química
16.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 532-541, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362475

RESUMEN

Metallo-ß-lactamase (MBL) superfamily proteins have a common αß/ßα sandwich fold and perform a variety of functions through metal-mediated catalysis. However, because of the enormous scale of this superfamily, only a small percentage of the proteins belonging to the superfamily have been annotated structurally or functionally to date. Therefore, much remains unknown about the MBL superfamily proteins. Here, TW9814, a hypothetical MBL superfamily protein, was structurally and functionally investigated. Guided by the crystal structure of dimeric TW9814, it was demonstrated that TW9814 functions as a phosphodiesterase (PDE) in the presence of divalent metal ions such as manganese(II) or nickel(II). A docking model between TW9814 and the substrate bis(p-nitrophenyl)phosphate (bpNPP) showed the importance of the dimerization of TW9814 for its bpNPP-hydrolyzing activity and for the interaction between the enzyme and the substrate. TW9814 showed outstanding catalytic efficiency (kcat/Km) under alkaline conditions compared with other PDEs. The activity of TW9814 appears to be regulated through a disulfide bond, which is a feature that is not present in other MBL superfamily members. This study provides a platform for the functional characterization of other hypothetical proteins of the MBL or other superfamilies.


Asunto(s)
Hidrolasas Diéster Fosfóricas , beta-Lactamasas , Catálisis , Metales/metabolismo , Hidrolasas Diéster Fosfóricas/química , beta-Lactamasas/química
17.
Mar Drugs ; 20(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323510

RESUMEN

Four new benzodipyran racemates, namely (±)-aspergiletals A-D (3-6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (-)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 µM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.


Asunto(s)
Antozoos/microbiología , Aspergillus , Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas/química , Piranos , Animales , Aspergillus/química , Aspergillus/metabolismo , Fluorescencia , Modelos Moleculares , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/aislamiento & purificación , Piranos/química , Piranos/aislamiento & purificación , Piranos/metabolismo
18.
PLoS Comput Biol ; 18(2): e1009871, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180220

RESUMEN

Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the ß clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in ß clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_ßIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the ß clade, St_ßIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_ßIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and ß clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Colina , Etanolamina , Fosfolipasa D/metabolismo , Hidrolasas Diéster Fosfóricas/química , Esfingomielinas , Venenos de Araña/química , Venenos de Araña/metabolismo
19.
J Biochem ; 170(6): 713-727, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34523685

RESUMEN

GDE4 and GDE7 are membrane-bound enzymes that exhibit lysophospholipase D activities. We found that GDE7 produced not only lysophosphatidic acid (LPA) but also cyclic phosphatidic acid (cPA) from lysophospholipids by a transphosphatidylation reaction. In contrast, GDE4 produced only LPA. The analysis of substrate specificity showed that 1-alkyl-lysophosphospholipids were preferred substrates for both enzymes rather than 1-alkyl-lysophospholipids and 1-alkenyl-lysophospholipids. Among the various lysophospholipids with different polar head groups that were tested, lysophosphatidylglycerol and lysophosphatidylserine were preferred substrates for GDE4 and GDE7, respectively. The detailed analysis of the dependency of the enzyme activities of GDE4 and GDE7 on divalent cations suggested multiple divalent cations were bound in the active sites of both enzymes. Taken together, these results suggest the possibility that GDE7 functions as a cPA-producing enzyme in the body.


Asunto(s)
Lisofosfolípidos/química , Hidrolasas Diéster Fosfóricas/química , Animales , Ratones , Hidrolasas Diéster Fosfóricas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Chem Biol Drug Des ; 99(3): 496-503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951520

RESUMEN

Inhibition of extracellular secreted enzyme autotaxin (ATX) represents an attractive strategy for the development of new therapeutics to treat various diseases and a few inhibitors entered in clinical trials. We herein describe structure-based design, synthesis, and biological investigations revealing a potent and orally bioavailable ATX inhibitor 1. During the molecular docking and scoring studies within the ATX enzyme (PDB-ID: 4ZGA), the S-enantiomer (Gscore = -13.168 kcal/mol) of the bound ligand PAT-494 scored better than its R-enantiomer (Gscore = -9.562 kcal/mol) which corroborated with the reported observation and analysis of the results suggested the scope of manipulation of the hydantoin substructure in PAT-494. Accordingly, the docking-based screening of a focused library of 10 compounds resulted in compound 1 as a better candidate for pharmacological studies. Compound 1 was synthesized from L-tryptophan and evaluated against ATX enzymatic activities with an IC50 of 7.6 and 24.6 nM in biochemical and functional assays, respectively. Further, ADME-PK studies divulged compound 1 as non-cytotoxic (19.02% cell growth inhibition at 20 µM in human embryonic kidney cells), metabolically stable against human liver microsomes (CLint  = 15.6 µl/min/mg; T1/2  = 113.2 min) with solubility of 4.82 µM and orally bioavailable, demonstrating its potential to be used for in vivo experiments.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Indoles/química , Hidrolasas Diéster Fosfóricas/química , Administración Oral , Animales , Sitios de Unión , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Imidazoles/química , Indoles/metabolismo , Indoles/farmacocinética , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Piridinas/química , Ratas , Ratas Sprague-Dawley , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA