Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.844
Filtrar
1.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733408

RESUMEN

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Salicilatos , Tylenchoidea , Glycine max/genética , Glycine max/parasitología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Salicilatos/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Resistencia a la Enfermedad/genética
2.
Microb Biotechnol ; 17(5): e14443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722820

RESUMEN

Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.


Asunto(s)
Hidrolasas de Éster Carboxílico , Heces , Malus , Pectinas , Prebióticos , Malus/microbiología , Pectinas/metabolismo , Heces/microbiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fermentación , Humanos , Bifidobacterium longum/metabolismo , Bifidobacterium longum/enzimología , Microbioma Gastrointestinal , Bifidobacterium/enzimología , Bifidobacterium/metabolismo
3.
J Pak Med Assoc ; 74(4): 647-651, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38751255

RESUMEN

Objectives: To examine the influence of hirudotherapy on parameters of oxidative stress. METHODS: The cross-sectional study was conducted from March 29 to September 29, 2021, at the Alanya Research and Training Hospital's Traditional and Complementary Medicine Application Centre, Turkey, and comprised adult volunteers of either gender. The participants were subjected to two sessions of hirudotherapy 4 weeks apart. Total antioxidant status, total oxidant status, oxidative stress index values, ischaemia-modified albumin level, paraoxonase 1, disulfide, native thiol, total thiol, and arylesterase levels were assessed at baseline and after the second hirudotherapy session. Data was analysed using SPSS 15. RESULTS: Of the 50 subjects, 30(60%) were females and 20(40%) were males. The overall mean age was 47.10±15.16 years. Oxidative stress, ischaemia-modified albumin and disulfide levels decreased, but not significantly (p>0.05). The reduction in disulfide levels was significant (p=0.021). CONCLUSIONS: Hirudotherapy, within its limitations, could reduce oxidative stress.


Asunto(s)
Antioxidantes , Arildialquilfosfatasa , Hidrolasas de Éster Carboxílico , Estrés Oxidativo , Albúmina Sérica Humana , Humanos , Femenino , Masculino , Adulto , Antioxidantes/metabolismo , Arildialquilfosfatasa/sangre , Arildialquilfosfatasa/metabolismo , Estudios Transversales , Persona de Mediana Edad , Albúmina Sérica Humana/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/sangre , Disulfuros/sangre , Compuestos de Sulfhidrilo/sangre , Oxidantes/sangre , Oxidantes/metabolismo , Turquía
4.
Elife ; 132024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660940

RESUMEN

Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.


Asunto(s)
Barrera Hematoencefálica , Hidrolasas de Éster Carboxílico , Ácidos Grasos , Inflamación , Neuroglía , Animales , Barrera Hematoencefálica/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Neuroglía/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética
5.
Appl Environ Microbiol ; 90(5): e0169423, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624219

RESUMEN

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.


Asunto(s)
Hidrolasas de Éster Carboxílico , Proteínas Fúngicas , Poliésteres , Proteínas Recombinantes , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Poliésteres/metabolismo , Hidrólisis
6.
J Biosci Bioeng ; 137(6): 437-444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575466

RESUMEN

Some strains of nonpathogenic Allorhizobium vitis can control crown gall disease in grapevines caused by pathogenic A. vitis and are considered candidates for biocontrol agents. Many plant pathogenic bacteria regulate the expression of their virulence genes via quorum sensing using N-acylhomoserine lactone (AHL) as a signaling compound. The eight nonpathogenic A. vitis strains used in this study showed AHL-degrading activity. The complete genome sequence of A. vitis MAFF 212306 contained three AHL lactonase gene homologs. When these genes were cloned and transformed into Escherichia coli DH5α, E. coli harboring the aiiV gene (RvVAR031_27660) showed AHL-degrading activity. The aiiV coding region was successfully amplified by polymerase chain reaction from the genomes of all eight strains of nonpathogenic A. vitis. Purified His-tagged AiiV exhibited AHL lactonase activity by hydrolyzing the lactone ring of AHL. AiiV had an optimal temperature of approximately 30 °C; however, its thermostability decreased above 40 °C. When the AiiV-expressing plasmid was transformed into Pectobacterium carotovorum subsp. carotovorum NBRC 3830, AHL production by NBRC 3830 decreased below the detection limit, and its maceration activity, which was controlled by quorum sensing, almost disappeared. These results suggest the potential use of AHL-degrading nonpathogenic A. vitis for the inhibition of crown gall disease in grapevines and other plant diseases controlled by quorum sensing.


Asunto(s)
Hidrolasas de Éster Carboxílico , Percepción de Quorum , Vitis , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Vitis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Escherichia coli/genética , Escherichia coli/metabolismo , Acil-Butirolactonas/metabolismo , Clonación Molecular , Agentes de Control Biológico
7.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542169

RESUMEN

LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
8.
Biochem Pharmacol ; 223: 116128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492781

RESUMEN

Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.


Asunto(s)
Carboxilesterasa , Hidrolasas de Éster Carboxílico , Humanos , Animales , Ratones , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Microsomas Hepáticos/metabolismo , Hígado/metabolismo , Hidrólisis , Triglicéridos/metabolismo
9.
Biotechnol Lett ; 46(3): 409-430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416309

RESUMEN

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.


Asunto(s)
Aspergillus nidulans , Hidrolasas de Éster Carboxílico , Aspergillus nidulans/genética , Aspergillus nidulans/enzimología , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Temperatura , Peso Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Estabilidad de Enzimas , Medios de Cultivo/química
10.
Food Chem ; 446: 138806, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402767

RESUMEN

High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.


Asunto(s)
Hidrolasas de Éster Carboxílico , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Dominio Catalítico , Alimentos
11.
J Pharmacol Exp Ther ; 388(3): 798-812, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253384

RESUMEN

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1ß and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas NLR , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dominio Pirina , Inflamasomas/metabolismo , Caspasa 1/metabolismo , Ésteres , Hidrolasas de Éster Carboxílico/metabolismo , Interleucina-1beta/metabolismo
12.
Analyst ; 149(2): 418-425, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078792

RESUMEN

Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.


Asunto(s)
Hidrolasas de Éster Carboxílico , Humanos , Hidrolasas de Éster Carboxílico/metabolismo
13.
J Exp Bot ; 75(1): 364-390, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712879

RESUMEN

The mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant. This trend was also observed in the modulation of 101 cell wall-related genes. Cell wall composition changes at early stages of Pph infection were associated with homogalacturonan methylation and the formation of egg boxes. Among the cell wall genes modulated, a pectin methylesterase inhibitor 3 (PvPMEI3) gene, closely related to AtPMEI3, was detected. PvPMEI3 protein was located in the apoplast and its pectin methylesterase inhibitory activity was demonstrated. PvPMEI3 seems to be a good candidate to play a key role in Pph infection, which was supported by analysis of an Arabidopsis pmei3 mutant, which showed susceptibility to Pph, in contrast to resistant Arabidopsis Col-0 plants. These results indicate a key role of the degree of pectin methylesterification in host resistance to Pph during the first steps of the attack.


Asunto(s)
Arabidopsis , Phaseolus , Arabidopsis/genética , Arabidopsis/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pseudomonas syringae/fisiología , Pectinas/metabolismo , Pared Celular/metabolismo
14.
Xenobiotica ; 54(1): 10-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142303

RESUMEN

1. Carboxylesterase (CES) has been studied extensively, mostly with substrates in the monoester structures. We investigated the relationship between indomethacin diester prodrugs and metabolic activation by microsomes and recombinant human CES.2. Eight indomethacin diester prodrugs were synthesised in two steps. They were used as substrates and hydrolysis rates were calculated.3. As a result, the major hydrolysis enzyme was CES. The hydrolysis rate of recombinant CES2A1 was comparable to that of recombinant CES1A1.4. In this study, by changing the structure of the prodrug to a diester structure, it was found that CES2 activity was equivalent to CES1 activity.5. It should be noted that the use of diester prodrugs in prodrug discovery, where organ-specific hydrolysis reactions are expected, may not yield the expected results.


Asunto(s)
Hidrolasas de Éster Carboxílico , Profármacos , Humanos , Hidrolasas de Éster Carboxílico/metabolismo , Indometacina , Profármacos/química , Profármacos/metabolismo , Carboxilesterasa/metabolismo , Microsomas/metabolismo , Hidrólisis
15.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067477

RESUMEN

Neuropathy target esterase (NTE) is a serine hydrolase with phospholipase B activity, which is involved in maintaining the homeostasis of phospholipids. It can be inhibited by aging inhibitors such as some organophosphorus (OP) compounds, which leads to delayed neurotoxicity with distal degeneration of axons. However, the detailed binding conformation of aging and non-aging inhibitors with NTE is not known. In this study, new computational models were constructed by using MODELLER 10.3 and AlphaFold2 to further investigate the inhibition mechanism of aging and non-aging compounds using molecular docking. The results show that the non-aging compounds bind the hydrophobic pocket much deeper than aging compounds and form the hydrophobic interaction with Phe1066. Therefore, the unique binding conformation of non-aging compounds may prevent the aging reaction. These important differences of the binding conformations of aging and non-aging inhibitors with NTE may help explain their different inhibition mechanism and the protection of non-aging NTE inhibitors against delayed neuropathy.


Asunto(s)
Hidrolasas de Éster Carboxílico , Compuestos Organofosforados , Animales , Simulación del Acoplamiento Molecular , Hidrolasas de Éster Carboxílico/metabolismo , Compuestos Organofosforados/química , Envejecimiento , Pollos/metabolismo
16.
Nat Commun ; 14(1): 7505, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980401

RESUMEN

Moth sex pheromones are a classical model for studying sexual selection. Females typically produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identify enzymes involved in acetate degradation using two closely related moth species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which have different quantities of acetate esters in their sex pheromone. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we show that two lipases and two esterases from H. virescens reduce the levels of pheromone acetate esters when expressed in H. subflexa females. Together, our results show that lipases and carboxylesterases are involved in tuning Lepidoptera pheromones composition.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Masculino , Animales , Femenino , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Feromonas/metabolismo , Lipasa/metabolismo , Acetatos/metabolismo
17.
World J Microbiol Biotechnol ; 39(12): 348, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855845

RESUMEN

Over recent years, Alicyclobacillus acidocaldarius, a Gram-positive nonpathogenic rod-shaped thermo-acid-tolerant bacterium, has posed numerous challenges for the fruit juice industry. However, the bacterium's unique characteristics, particularly its nonpathogenic and thermophilic capabilities, offer significant opportunities for genetic exploration by biotechnologists. This study presents the computational proteogenomics report on the carboxylesterase (CE) enzyme in A. acidocaldarius, shedding light on structural and evolutional of CEs from this bacterium. Our analysis revealed that the average molecular weight of CEs in A. acidocaldarius was 41 kDa, with an isoelectric point around 5. The amino acid composition favored negative amino acids over positive ones. The aliphatic index and hydropathicity were approximately 88 and - 0.15, respectively. While the protein sequence showed no disulfide bonds in the CEs' structure, the presence of Cys amino acids was observed in the structure of CEs. Phylogenetic analysis presented more than 99% similarity between CEs, indicating their close evolutionary relationship. By applying homology modeling, the 3-dimensional structural models of the carboxylesterase were constructed, which with the help of structural conservation and solvent accessibility analysis highlighted key residues and regions responsible for enzyme stability and conformation. The specific patterns presented the total solvent accessibility of less than 25 (Å2) was in considerable position as well as Gly residues were noticeably have high accessibility to solvent in all structures. Ala was the more frequent amino acids in the conserved-SASA of carboxylesterases. Furthermore, unsupervised agglomerative hierarchical clustering based on solvent accessibility feature successfully clustered and even distinguished this enzyme from proteases from the same genome. These findings contribute to a deeper understanding of the nonpathogenic A. acidocaldarius carboxylesterase and its potential applications in biotechnology. Additionally, structural analysis of CEs would help to address potential solutions in fruit juice industry with utilization of computational structural biology.


Asunto(s)
Alicyclobacillus , Proteogenómica , Carboxilesterasa/genética , Carboxilesterasa/química , Carboxilesterasa/metabolismo , Filogenia , Alicyclobacillus/genética , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Frutas/microbiología , Aminoácidos/genética , Solventes
18.
J Environ Manage ; 347: 119193, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797518

RESUMEN

From the surface of the earth to the depths of the ocean, microplastics are a hazard for both aquatic and terrestrial habitats. Due to their small size and vast expanse, they can further integrate into living things. The fate of microplastics in the environment depends upon the biotic components such as microorganisms which have potential enzymes to degrade the microplastics. As a result, scientists are interested in using microorganisms like bacteria, fungi, and others to remediate microplastic. These microorganisms release the cutinase enzyme, which is associated with the enzymatic breakdown of microplastics and plastic films. Yet, numerous varieties of microplastics exist in the environment and their contaminants act as a significant challenge in degrading microplastics. The review discusses the cutinases enzyme degradation strategies and potential answers to deal with existing and newly generated microplastic waste - polyethylene (PE), polyethylene terephthalate (PET), poly-ε-caprolactone (PCL), polyurethanes (PU), and polybutylene succinate (PBS), along with their degradation pathways. The potential of cutinase enzymes from various microorganisms can effectively act to remediate the global problem of microplastic pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Hidrolasas de Éster Carboxílico/metabolismo , Tereftalatos Polietilenos
19.
Protein J ; 42(6): 675-684, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819423

RESUMEN

Amino ester hydrolases (AEHs) are capable of rapid synthesis of cephalexin but suffer from rapid deactivation even at low temperatures. Previous efforts to engineer AEH have generated several improved variants but have been limited in scope in part due to limitations in activity assay throughput for ß-lactam synthesis reactions. Rational design of 'whole variants' was explored to rapidly improve AEH thermostability by mutating between 3-15% of residues. Most variants were found to be inactive due to a mutated calcium binding site, the function of which has not previously been described. Four active variants, all with improved melting temperatures, were characterized in terms of synthesis and hydrolysis activity, melting temperature, and deactivation at 25°C. Two variants were found to have improved total turnover numbers relative to the initial AEH variant; however, a clear tradeoff exists between improved stability and overall activity of each variant.


Asunto(s)
Hidrolasas de Éster Carboxílico , beta-Lactamas , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Sitios de Unión , Temperatura , Hidrólisis , Estabilidad de Enzimas
20.
Fungal Genet Biol ; 169: 103841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797717

RESUMEN

Once deposited in the plant cell wall, pectin undergoes demethylesterification by endogenous pectin methylesterases (PMEs), which play various roles in growth and development, including defense against pathogen attacks. Pathogen PMEs can alter pectin's methylesterification pattern, increasing its susceptibility to degradation by other fungal pectinases and thus playing a critical role as virulence factors during early infection stages. To investigate the evolutionary history of PMEs in the Dothideomycetes class of fungi, we obtained genomic data from 15 orders (79 species) and added genomic data from 61 isolates of Corynespora cassiicola. Our analyses involved maximum likelihood phylogenies, gene genealogies, and selection analyses. Additionally, we measured PME gene expression levels of C. cassiicola using soybean as a host through RT-qPCR assays. We recovered 145 putative effector PMEs and 57 putative non-effector PMEs from across the Dothideomycetes. The PME gene family exhibits a small size (up to 5 members per genome) and comprises three major clades. The evolutionary patterns of the PME1 and PME2 clades were largely shaped by duplications and recurring gene retention events, while biased gene loss characterized the small-sized PME3 clade. The presence of five members in the PME gene family of C. cassiicola suggests that the family may play a key role in the evolutionary success of C. cassiicola as a polyphagous plant pathogen. The haplogroups Cc_PME1.1 and Cc_PME1.2 exhibited an accelerated rate of evolution, whereas Cc_PME2.1, Cc_PME2.2, and Cc_PME2.3 seem to be under strong purifying selective constraints. All five PME genes were expressed during infection of soybean leaves, with the highest levels during from six to eight days post-inoculation. The highest relative expression level was measured for CC_29_g7533, a member of the Cc_PME2.3 clade, while the remaining four genes had relatively lower levels of expression.


Asunto(s)
Hidrolasas de Éster Carboxílico , Hongos , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hongos/metabolismo , Pectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA