Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 289-298, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512071

RESUMEN

Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Šresolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metaloproteínas , Hidrolasas de Triéster Fosfórico , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Dominio Catalítico , Gadolinio , Europio , Cationes
2.
Protein Eng Des Sel ; 362023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-37941439

RESUMEN

Organophosphorus (OP) pesticides are still widely applied but pose a severe toxicological threat if misused. For in vivo detoxification, the application of hydrolytic enzymes potentially offers a promising treatment. A well-studied example is the phosphotriesterase of Brevundimonas diminuta (BdPTE). Whereas wild-type BdPTE can hydrolyse pesticides like paraoxon, chlorpyrifos-oxon and mevinphos with high catalytic efficiencies, kcat/KM >2 × 107 M-1 min-1, degradation of malaoxon is unsatisfactory (kcat/KM ≈ 1 × 104 M-1 min-1). Here, we report the rational engineering of BdPTE mutants with improved properties and their efficient production in Escherichia coli. As result, the mutant BdPTE(VRNVVLARY) exhibits 37-fold faster malaoxon hydrolysis (kcat/KM = 4.6 × 105 M-1 min-1), together with enhanced expression yield, improved thermal stability and reduced susceptibility to oxidation. Therefore, this BdPTE mutant constitutes a powerful candidate to develop a biocatalytic antidote for the detoxification of this common pesticide metabolite as well as related OP compounds.


Asunto(s)
Plaguicidas , Hidrolasas de Triéster Fosfórico , Plaguicidas/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Malatión , Compuestos Organofosforados/metabolismo
3.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 992-1009, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860961

RESUMEN

A bacterial phosphotriesterase was employed as an experimental paradigm to examine the effects of multiple factors, such as the molecular constructs, the ligands used during protein expression and purification, the crystallization conditions and the space group, on the visualization of molecular complexes of ligands with a target enzyme. In this case, the ligands used were organophosphates that are fragments of the nerve agents and insecticides on which the enzyme acts as a bioscavenger. 12 crystal structures of various phosphotriesterase constructs obtained by directed evolution were analyzed, with resolutions of up to 1.38 Å. Both apo forms and holo forms, complexed with the organophosphate ligands, were studied. Crystals obtained from three different crystallization conditions, crystallized in four space groups, with and without N-terminal tags, were utilized to investigate the impact of these factors on visualizing the organophosphate complexes of the enzyme. The study revealed that the tags used for protein expression can lodge in the active site and hinder ligand binding. Furthermore, the space group in which the protein crystallizes can significantly impact the visualization of bound ligands. It was also observed that the crystallization precipitants can compete with, and even preclude, ligand binding, leading to false positives or to the incorrect identification of lead drug candidates. One of the co-crystallization conditions enabled the definition of the spaces that accommodate the substituents attached to the P atom of several products of organophosphate substrates after detachment of the leaving group. The crystal structures of the complexes of phosphotriesterase with the organophosphate products reveal similar short interaction distances of the two partially charged O atoms of the P-O bonds with the exposed ß-Zn2+ ion and the buried α-Zn2+ ion. This suggests that both Zn2+ ions have a role in stabilizing the transition state for substrate hydrolysis. Overall, this study provides valuable insights into the challenges and considerations involved in studying the crystal structures of ligand-protein complexes, highlighting the importance of careful experimental design and rigorous data analysis in ensuring the accuracy and reliability of the resulting phosphotriesterase-organophosphate structures.


Asunto(s)
Hidrolasas de Triéster Fosfórico , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Cristalización , Ligandos , Reproducibilidad de los Resultados , Organofosfatos , Cristalografía por Rayos X
4.
Chem Biol Interact ; 383: 110657, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37573927

RESUMEN

The problem of biofilm formation is a serious concern under various pathological conditions such as extensive burns, wounds in diabetic patients, bedsores, cystic fibrosis, nosocomial infections from implantable medical devices such as catheters, valves, etc. Environmental diffusion of biofilm (in pools, wet floors, industrial food plants) that could represent a reservoir of antibiotic resistant bacteria constitues an additional issue. In this work is described a lactonase from Rhodococcus erythropolis, a phosphotriesterase-like lactonase (PLL) enzyme, which has already been studied in the past and can be used for containment of biofilm formation. The protein is 28% and 40% identical with respect to the Pseudomonas diminuta PTE and the thermostable Saccharolobus solfataricus SsoPox respectively. The protein was obtained starting from a synthetic His-tagged gene, expressed in E. coli, purified and further characterized. New properties, not previously known or deducible from its sequence, have been highlighted. These properties are: the enzyme is thermophilic and thermostable even though it originates from a mesophilic bacterium; the enzyme has a long (months) shelf life at 4 °C; the enzyme is not only stable to low concentrations of the oxidant H2O2 but even activated by it at high concentrations; the enzyme proved to be a proficient quorum quenching enzyme, able to hydrolase acyl-homoserine lactones 3oxoC12-HSL and C4-HSL, and can inhibit up to 60% the formation of Pseudomonas aeruginosa (PAO1) biofilm. These different properties make the lactonase useful to fight resistant bacteria that induce inflammatory and infectious processes mediated by the quorum sensing mechanism.


Asunto(s)
Hidrolasas de Triéster Fosfórico , Percepción de Quorum , Humanos , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrógeno , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Biopelículas , Bacterias/metabolismo , Estabilidad de Enzimas
5.
J Phys Chem B ; 127(34): 7462-7471, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37584503

RESUMEN

V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.


Asunto(s)
Agentes Nerviosos , Hidrolasas de Triéster Fosfórico , Realidad Virtual , Simulación de Dinámica Molecular , Hidrolasas de Triéster Fosfórico/metabolismo , Hidrólisis , Agua
6.
Biomol NMR Assign ; 17(1): 55-60, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36763236

RESUMEN

NMR chemical shift assignments are reported for backbone (15N, 1H) and partial side chain (13Cα and ß, side chain 1H) atoms of diisopropyl fluorophosphatase (DFPase), a calcium-dependent phosphotriesterase capable of hydrolyzing phosphorus - fluorine bonds in a variety of toxic organophosphorus compounds. Analysis of residues lining the active site of DFPase highlight a number of residues whose chemical shifts can be used as a diagnostic of binding and detection of organophosphorus compounds.


Asunto(s)
Loligo , Hidrolasas de Triéster Fosfórico , Animales , Loligo/metabolismo , Resonancia Magnética Nuclear Biomolecular , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo
7.
Biochemistry ; 62(4): 942-955, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752589

RESUMEN

Neurotoxic organophosphorus compounds (OPs) pose a severe threat if misused in military conflicts or by terrorists. Administration of a hydrolytic enzyme that can decompose the circulating nerve agent into non-toxic metabolites in vivo offers a potential treatment. A promising candidate is the homo-dimeric phosphotriesterase originating from the bacterium Brevundimonas diminuta (BdPTE), which has been subject to several rational and combinatorial protein design studies. A series of engineered versions with much improved catalytic efficiencies toward medically relevant nerve agents was described, carrying up to 22 mutations per enzyme subunit. To provide a basis for further rational design, we have determined the crystal structure of the highly active variant 10-2-C3(C59V/C227V)─stabilized against oxidation by substitution of two unpaired Cys residues─in complex with a substrate analogue at 1.5 Å resolution. Unexpectedly, the long loop segment (residues 253-276) that covers the active site shows a totally new conformation, with drastic structural deviations up to 19 Å, which was neither predicted in any of the preceding protein design studies nor seen in previous crystallographic analyses of less far evolved enzyme versions. Inspired by this structural insight, additional amino acid exchanges were introduced and their effects on protein stability as well as on the catalytic efficiency toward several neurotoxic OPs were investigated. Somewhat surprisingly, our results suggest that the presently available engineered version of BdPTE, in spite of its design on the basis of partly false structural assumptions, constitutes a fairly optimized enzyme for the detoxification of relevant OP nerve agents.


Asunto(s)
Agentes Nerviosos , Hidrolasas de Triéster Fosfórico , Hidrolasas de Triéster Fosfórico/metabolismo , Organofosfatos , Dominio Catalítico , Compuestos Organofosforados/metabolismo
8.
J Am Chem Soc ; 145(2): 1083-1096, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36583539

RESUMEN

Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.


Asunto(s)
Hidrolasas , Hidrolasas de Triéster Fosfórico , Acetilcolinesterasa , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Biocatálisis , Catálisis
9.
Appl Environ Microbiol ; 88(21): e0115322, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226967

RESUMEN

Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom Thalassiosira pseudonana. However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic. Here, we applied LiDSI to six industrially relevant polypeptides, including protamine, metallothionein, phosphotriesterase, choline oxidase, laccase, and polyamine synthase. Protamine and metallothionein were successfully immobilized on the frustule as protein fusions with green fluorescent protein (GFP) at the N terminus, indicating that LiDSI can be used for polypeptides which are rich in arginine and cysteine. In contrast, we obtained mutants for the latter four enzymes in forms without green fluorescent protein. Immobilized phosphotriesterase, choline oxidase, and laccase showed enzyme activities even after the purification of frustule in the presence of 1% (wt/vol) octylphenoxy poly(ethyleneoxy)ethanol. An immobilized branched-chain polyamine synthase changed the intracellular polyamine composition and silica nanomorphology. These results illustrate the possibility of LiDSI for industrial applications. IMPORTANCE Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. Living diatom silica immobilization (LiDSI) is a recently developed technique for in vivo protein immobilization on the diatom frustule. We aimed to explore the possibility of using LiDSI for industrial applications by successfully immobilizing six polypeptides: (i) protamine (Oncorhynchus keta), a stable antibacterial agent; (ii) metallothionein (Saccharomyces cerevisiae), a metal adsorption molecule useful for bioremediation; (iii) phosphotriesterase (Sulfolobus solfataricus), a scavenger for toxic organic phosphates; (iv) choline oxidase (Arthrobacter globiformis), an enhancer for photosynthetic activity and yield of plants; (v) laccase (Bacillus subtilis), a phenol oxidase utilized for delignification of lignocellulosic materials; and (vi) branched-chain polyamine synthase (Thermococcus kodakarensis), which produces branched-chain polyamines important for DNA and RNA stabilization at high temperatures. This study provides new insights into the field of applied biological materials.


Asunto(s)
Diatomeas , Hidrolasas de Triéster Fosfórico , Diatomeas/metabolismo , Proteínas Fluorescentes Verdes/genética , Lacasa/genética , Lacasa/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Péptidos/metabolismo , Poliaminas/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Metalotioneína/metabolismo , Protaminas/metabolismo
10.
Appl Microbiol Biotechnol ; 106(19-20): 6493-6504, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36107214

RESUMEN

A related group of phosphotriesters known as organophosphate flame retardants (OPFRs) has become emerging contaminants due to its worldwide use. The lack of an easily hydrolysable bond renders OPFRs inert to the well-known phosphotriesterases capable of hydrolyzing the neurotoxic organophosphates. An OPFRs phosphotriesterase gene stpte was cloned from plasmid pStJH of strain Sphingopyxis terrae subsp. terrae YC-JH3 and was heterologously expressed in Escherichia coli. The recombinant protein St-PTE was purified and analyzed. St-PTE showed the highest catalytic activity at pH 8.5 and 35 °C. The optimal substrate for St-PTE is triphenyl phosphate, with kcat/Km of 5.03 × 106 M-1 s-1, two orders of magnitude higher than those of tricresyl phosphate (4.17 × 104 M-1 s-1), 2-ethylhexyl diphenyl phosphate (2.03 × 104 M-1 s-1) and resorcinol bis(diphenyl phosphate) (6.30 × 104 M-1 s-1). St-PTE could break the P-O bond of tri-esters and convert aryl-OPFRs into their corresponding di-ester metabolites, including polymers of resorcinol bis(diphenyl phosphate). Mediated by transposase, the gene of OPFRs phosphotriesterase could be transferred horizontally among closely related strains of Sphingomonas, Sphingobium and Sphingopyxis. KEY POINTS: • St-PTE from Sphingopyxis terrae subsp. terrae YC-JH3 could hydrolyze aryl-OPFRs. • Metabolites of RBDPP hydrolyzed by phosphotriesterase were identified. • St-PTE could hydrolyze the P-O cleavage of dimer and trimer of RBDPP. • Phosphotriesterase genes transfer among Sphingomonadaceae mediated by transposase.


Asunto(s)
Retardadores de Llama , Hidrolasas de Triéster Fosfórico , Tritolilfosfatos , Compuestos de Bifenilo , Ésteres , Retardadores de Llama/metabolismo , Organofosfatos/metabolismo , Fosfatos , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Polímeros , Proteínas Recombinantes , Resorcinoles , Sphingomonadaceae , Transposasas
11.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917352

RESUMEN

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Asunto(s)
Organismos Acuáticos , Bacterias , Contaminantes Ambientales , Compuestos Organofosforados , Hidrolasas de Triéster Fosfórico , Organismos Acuáticos/enzimología , Bacterias/enzimología , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Océano Índico , Mar Mediterráneo , Compuestos Organofosforados/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Fósforo/metabolismo , Agua de Mar/microbiología
12.
Chem Asian J ; 17(14): e202200439, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35586954

RESUMEN

The enzymatic degradation of pesticides paraoxon (PON) and parathion (PIN) by phosphotriesterase (PTE) has been investigated by QM/MM calculations and MD simulations. In the PTE-PON complex, Znα and Znß in the active site are five- and six-coordinated, respectively, while both zinc ions are six coordinated with the Znα -bound water molecule (WT1) for the PTE-PIN system. The hydrolytic reactions for PON and PIN are respectively driven by the nucleophilic attack of the bridging-OH- and the Znα -bound water molecule on the phosphorus center of substrate, and the two-step hydrolytic process is predicted to be the rate-limiting step with the energy spans of 13.8 and 14.4 kcal/mol for PON and PIN, respectively. The computational studies reveal that the presence of the Znα -bound water molecule depends on the structural feature of substrates characterized by P=O and P=S, which determines the hydrolytic mechanism and efficiency for the degradation of organophosphorus pesticides by PTE.


Asunto(s)
Paratión , Plaguicidas , Hidrolasas de Triéster Fosfórico , Compuestos Organofosforados , Paraoxon/química , Paraoxon/metabolismo , Paratión/química , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Agua
13.
Phys Chem Chem Phys ; 24(18): 10933-10943, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35466335

RESUMEN

Due to deadly toxicity and high environmental stability of the nerve agent VX, an efficient decontamination approach is desperately needed in tackling its severe threat to human security. The enzymatic destruction of nerve agents has been generally considered as one of the most effective ways, and here the hydrolysis of VX by phosphotriesterase (PTE) was investigated by extensive QM/MM and MM MD simulations. The hydrolytic cleavage of P-S by PTE is a two-step process with the free energy spans of 15.8 and 26.0 kcal mol-1 for the RP- and SP-enantiomer VX, respectively, and such remarkable stereospecificity of VX enantiomers in the enzymatic degradation is attributed to their conformational compatibility with the active pocket. The structurally less adaptive SP-enantiomer allows one additional water molecule to enter the binuclear zinc center and remarkably facilitates the release of the degraded product. Overall, the rate-limiting steps in the enzymatic degradation of VX by PTE involve the degraded product release of the RP-enantiomer and the enzymatic P-S cleavage of the SP-enantiomer. Further computational analysis on the mutation of selected residues also revealed that H257Y, H257D, H254Q-H257F, and L7ep-3a variants allow more water molecules to enter the active site, which improves the catalytic efficiency of PTE, as observed experimentally. The present work provides mechanistic insights into the stereoselective hydrolysis of VX by PTE and the activity manipulation through the active-site accessibility of water molecules, which can be used for the enzyme engineering to defeat chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Hidrolasas de Triéster Fosfórico , Dominio Catalítico , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/metabolismo , Sustancias para la Guerra Química/toxicidad , Descontaminación , Humanos , Hidrólisis , Compuestos Organotiofosforados , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Agua
14.
ACS Biomater Sci Eng ; 8(2): 493-501, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030308

RESUMEN

Enzymatic decontamination of organophosphate compounds offers a biofriendly pathway to the neutralization of highly dangerous compounds. Environmental dissemination of enzymes, however, is an ongoing problem considering the costly process of production and chemical modification for stability that can diminish catalytic activity. As a result, there is interest in the potential for enzymatic encapsulation in situ or into nascent bacterial membrane vesicles to improve catalytic stability across various environmental challenges associated with storage and field deployment. In this study, we have engineered bacterial outer membrane vesicles (OMVs) to encapsulate the diisopropyl fluorophosphatase (DFPase), an enzyme originally isolated from squid Loligo vulgaris and capable of hydrolyzing diisopropyl fluorophosphate (DFP) and other organophosphates compounds. Here we employed a recombinant lipopeptide anchor to direct recruitment of DFPase into OMVs, which were isolated from culture media and tested for catalytic activity against both diisopropyl fluorophosphate and paraoxon. Our encapsulation strategy prevented the loss of catalytic activity despite lyophilization, extended storage time (2 days), and extreme temperatures up to 80 °C. These data underscore the appeal of DFPase as a biodecontaminant of organophosphates as well as the potential for OMV packaging in stabilized field deployment applications.


Asunto(s)
Loligo , Hidrolasas de Triéster Fosfórico , Animales , Membrana Externa Bacteriana , Loligo/metabolismo , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Temperatura
15.
Phys Chem Chem Phys ; 24(2): 687-696, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927643

RESUMEN

Enzymatic hydrolysis by phosphotriesterase (PTE) is one of the most effective ways of degrading organophosphorus pesticides, but the catalytic efficiency depends on the structural features of substrates. Here the enzymatic degradation of diazinon (DIN) and diazoxon (DON), characterized by PS and PO, respectively, have been investigated by QM/MM calculations and MM MD simulations. Our calculations demonstrate that the hydrolysis of DON (with PO) is inevitably initiated by the nucleophilic attack of the bridging-OH- on the phosphorus center, while for DIN (with PS), we proposed a new degradation mechanism, initiated by the nucleophilic attack of the Znα-bound water molecule, for its low-energy pathway. For both DIN and DON, the hydrolytic reaction is predicted to be the rate-limiting step, with energy barriers of 18.5 and 17.7 kcal mol-1, respectively. The transportation of substrates to the active site, the release of the leaving group and the degraded product are generally verified to be favorable by MD simulations via umbrella sampling, both thermodynamically and dynamically. The side-chain residues Phe132, Leu271 and Tyr309 play the gate-switching role to manipulate substrate delivery and product release. In comparison with the DON-enzyme system, the degraded product of DIN is more easily released from the active site. These new findings will contribute to the comprehensive understanding of the enzymatic degradation of toxic organophosphorus compounds by PTE.


Asunto(s)
Teoría Funcional de la Densidad , Simulación de Dinámica Molecular , Compuestos Organofosforados/metabolismo , Plaguicidas/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Estructura Molecular , Compuestos Organofosforados/química , Plaguicidas/química , Hidrolasas de Triéster Fosfórico/química
16.
ACS Appl Mater Interfaces ; 13(50): 60433-60445, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34894651

RESUMEN

Catalytically active materials for the enhancement of personalized protective equipment (PPE) could be advantageous to help alleviate threats posed by neurotoxic organophosphorus compounds (OPs). Accordingly, a chimeric protein comprised of a supercharged green fluorescent protein (scGFP) and phosphotriesterase from Agrobacterium radiobacter (arPTE) was designed to drive the polymer surfactant (S-)-mediated self-assembly of microclusters to produce robust, enzymatically active materials. The chimera scGFP-arPTE was structurally characterized via circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering, and its biophysical properties were determined. Significantly, the chimera exhibited greater thermal stability than the native constituent proteins, as well as a higher catalytic turnover number (kcat). Furthermore, scGFP-arPTE was electrostatically complexed with monomeric S-, driving self-assembly into [scGFP-arPTE][S-] nanoclusters, which could be dehydrated and cross-linked to yield enzymatically active [scGFP-arPTE][S-] porous films with a high-order structure. Moreover, these clusters could self-assemble within cotton fibers to generate active composite textiles without the need for the pretreatment of the fabrics. Significantly, the resulting materials maintained the biophysical activities of both constituent proteins and displayed recyclable and persistent activity against the nerve agent simulant paraoxon.


Asunto(s)
Materiales Biocompatibles/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Polímeros/metabolismo , Tensoactivos/metabolismo , Textiles , Agrobacterium tumefaciens/enzimología , Materiales Biocompatibles/química , Proteínas Fluorescentes Verdes/química , Ensayo de Materiales , Modelos Moleculares , Tamaño de la Partícula , Hidrolasas de Triéster Fosfórico/química , Polímeros/química , Tensoactivos/química
17.
Molecules ; 26(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34641383

RESUMEN

Organophosphate hydrolases are promising as potential biotherapeutic agents to treat poisoning with pesticides or nerve gases. However, these enzymes often need to be further engineered in order to become useful in practice. One example of such enhancement is the alteration of enantioselectivity of diisopropyl fluorophosphatase (DFPase). Molecular modeling techniques offer a unique opportunity to address this task rationally by providing a physical description of the substrate-binding process. However, DFPase is a metalloenzyme, and correct modeling of metal cations is a challenging task generally coming with a tradeoff between simulation speed and accuracy. Here, we probe several molecular mechanical parameter combinations for their ability to empower long simulations needed to achieve a quantitative description of substrate binding. We demonstrate that a combination of the Amber19sb force field with the recently developed 12-6 Ca2+ models allows us to both correctly model DFPase and obtain new insights into the DFP binding process.


Asunto(s)
Calcio/química , Calcio/metabolismo , Simulación de Dinámica Molecular , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Dominio Catalítico , Modelos Moleculares , Conformación Proteica
18.
Toxicol Lett ; 350: 194-201, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303790

RESUMEN

The phosphotriesterase of the bacterium Brevundimonas diminuta (BdPTE) is a naturally occurring enzyme that catalyzes the hydrolysis of organophosphate (OP) nerve agents as well as pesticides and offers a potential treatment of corresponding intoxications. While BdPTE mutants with improved catalytic efficiencies against several OPs have been described, unexpectedly, less efficient breakdown of an OP was observed upon application in an animal model compared with in vitro measurements. Here, we describe detailed inhibition studies with the high-activity BdPTE mutant 10-2C3(C59M/C227A) by human plasma components, indicating that this enzyme is inhibited by serum albumin. The inhibitory activity is mediated by depletion of crucial zinc ions from the BdPTE active site, either via the known high-affinity zinc binding site of albumin or via chemical complex formation with its free thiol side chain at position Cys34. Albumin pre-charged with zinc ions or carrying a chemically blocked Cys34 side chain showed significantly reduced inhibitory activity; in fact, the combination of both measures completely abolished BdPTE inhibition. Consequently, the available zinc ion concentration in blood plays an important role for BdPTE activity in vivo and should be taken into account for therapeutic development and application of a catalytic OP scavenger.


Asunto(s)
Albúminas/farmacología , Proteínas Bacterianas/farmacología , Inhibidores Enzimáticos/farmacología , Intoxicación por Organofosfatos/tratamiento farmacológico , Hidrolasas de Triéster Fosfórico/metabolismo , Hidrolasas de Triéster Fosfórico/uso terapéutico , Compuestos de Sulfhidrilo/metabolismo , Albúminas/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacteraceae/química , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Inhibidores Enzimáticos/metabolismo , Modelos Animales , Compuestos Organofosforados/metabolismo , Compuestos de Sulfhidrilo/sangre
19.
Arch Toxicol ; 95(8): 2815-2823, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160649

RESUMEN

Highly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M-1 min-1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC-MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(-) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(-) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


Asunto(s)
Caulobacteraceae/enzimología , Agentes Nerviosos/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Catálisis , Cromatografía Liquida , Hidrólisis , Mutación , Agentes Nerviosos/química , Agentes Nerviosos/toxicidad , Hidrolasas de Triéster Fosfórico/genética , Estereoisomerismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA