Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000571

RESUMEN

Hypertension is a major controllable risk factor associated with cardiovascular disease (CVD) and overall mortality worldwide. Most people with hypertension must take medications that are effective in blood pressure management but cause many side effects. Thus, it is important to explore safer antihypertensive alternatives to regulate blood pressure. In this study, peanut protein concentrate (PPC) was hydrolyzed with 3-5% Alcalase for 3-10 h. The in vitro angiotensin-converting enzyme (ACE) and renin-inhibitory activities of the resulting peanut protein hydrolysate (PPH) samples and their fractions of different molecular weight ranges were determined as two measures of their antihypertensive potentials. The results show that the crude PPH produced at 4% Alcalase for 6 h of hydrolysis had the highest ACE-inhibitory activity with IC50 being 5.45 mg/mL. The PPH samples produced with 3-5% Alcalase hydrolysis for 6-8 h also displayed substantial renin-inhibitory activities, which is a great advantage over the animal protein-derived bioactive peptides or hydrolysate. Remarkably higher ACE- and renin-inhibitory activities were observed in fractions smaller than 5 kDa with IC50 being 0.85 and 1.78 mg/mL. Hence, the PPH and its small molecular fraction produced under proper Alcalase hydrolysis conditions have great potential to serve as a cost-effective anti-hypertensive ingredient for blood pressure management.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Arachis , Peptidil-Dipeptidasa A , Proteínas de Plantas , Hidrolisados de Proteína , Renina , Subtilisinas , Subtilisinas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Arachis/química , Renina/metabolismo , Renina/antagonistas & inhibidores , Hidrólisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/química , Antihipertensivos/farmacología , Antihipertensivos/química , Humanos
2.
Nutrients ; 16(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931200

RESUMEN

Pulses, as an important part of the human diet, can act as a source of high-quality plant proteins. Pulse proteins and their hydrolysates have shown promising results in alleviating metabolic syndrome and modulating the gut microbiome. Their bioactivities have become a focus of research, with many new findings added in recent studies. This paper comprehensively reviews the anti-hypertension, anti-hyperglycemia, anti-dyslipidemia and anti-obesity bioactivities of pulse proteins and their hydrolysates in recent in vitro and in vivo studies, which show great potential for the prevention and treatment of metabolic syndrome. In addition, pulse proteins and their hydrolysates can regulate the gut microbiome, which in turn can have a positive impact on the treatment of metabolic syndrome. Furthermore, the beneficial effects of some pulse proteins and their hydrolysates on metabolic syndrome have been supported by clinical studies. This review might provide a reference for the application of pulse proteins and their hydrolysates in functional foods or nutritional supplements for people with metabolic syndrome.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Hidrolisados de Proteína , Síndrome Metabólico/microbiología , Síndrome Metabólico/dietoterapia , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/administración & dosificación , Animales , Proteínas de Plantas
3.
Nutrients ; 16(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931268

RESUMEN

Obesity is acknowledged as a significant risk factor for cardiovascular disease, often accompanied by increased inflammation and diabetes. Bioactive peptides derived from marine animal proteins show promise as safe and effective anti-obesity agents by regulating adipocyte differentiation through the AMPK signaling pathway. Therefore, this study aims to investigate the anti-obesity and anti-diabetic effects of bioactive compounds derived from a Meretrix lusoria Protamex enzymatic hydrolysate (MLP) fraction (≤1 kDa) through a 6-week treatment (150 mg/kg or 300 mg/kg, administered once daily) in leptin receptor-deficient db/db mice. The MLP treatment significantly decreased the body weight, serum total cholesterol, triglycerides, and LDL-cholesterol levels while also exhibiting a beneficial effect on hepatic and serum marker parameters in db/db mice. A histological analysis revealed a reduction in hepatic steatosis and epididymal fat following MLP treatment. Furthermore, poor glucose tolerance was improved, and hepatic antioxidant enzyme activities were elevated in MLP-treated mice compared to db/db control mice. Western blot analysis showed an increased expression of the AMPK protein after MLP treatment. In addition, the expression of lipogenic genes decreased in db/db mice. These findings indicate that bioactive peptides, which are known to regulate blood glucose levels, lipid metabolism, and adipogenesis, could be beneficial functional food additives and pharmaceuticals.


Asunto(s)
Fármacos Antiobesidad , Obesidad , Péptidos , Animales , Obesidad/tratamiento farmacológico , Ratones , Masculino , Péptidos/farmacología , Fármacos Antiobesidad/farmacología , Hidrolisados de Proteína/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Adipogénesis/efectos de los fármacos , Peso Corporal/efectos de los fármacos
4.
Food Funct ; 15(14): 7364-7374, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912915

RESUMEN

Bioactive peptides derived from food are promising health-promoting ingredients that can be used in functional foods and nutraceutical formulations. In addition to the potency towards the selected therapeutic target, the bioavailability of bioactive peptides is a major factor regarding clinical efficacy. We have previously shown that a low molecular weight peptide fraction (LMWPF) from poultry by-product hydrolysates possesses angiotensin-1-converting enzyme (ACE-1) and dipeptidyl-peptidase 4 (DPP4) inhibitory activities. The present study aimed to investigate the bioavailability of the bioactive peptides in the LMWPF. Prior to the investigation of bioavailability, a dipeptide YA was identified from this fraction as a dual inhibitor of ACE-1 and DPP4. Gastrointestinal (GI) stability and intestinal absorption of the bioactive peptides (i.e., YA as well as two previously reported bioactive dipeptides (VL and IY)) in the LMWPF were evaluated using the INFOGEST static in vitro digestion model and intestinal Caco-2 cell monolayer, respectively. Analysis of peptides after in vitro digestion confirmed that the dipeptides were resistant to the simulated GI conditions. After 4 hours of incubation, the concentration of the peptide from the apical side of the Caco-2 cell monolayer showed a significant decrease. However, the corresponding absorbed peptides were not detected on the basolateral side, suggesting that the peptides were not transported across the intestinal monolayer but rather taken up or metabolized by the Caco2 cells. Furthermore, when analyzing the gene expression of the Caco-2 cells upon peptide stimulation, a down-regulation of peptide transporters, the transcription factor CDX2, and the tight junction protein-1 (TJP1) was observed, suggesting the specific effects of the peptides on the Caco-2 cells. The study demonstrated that bioactive dipeptides found in the LMWPF were stable through in vitro GI digestion; however, the overall bioavailability may be hindered by inadequate uptake across the intestinal barrier.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Absorción Intestinal , Hidrolisados de Proteína , Humanos , Células CACO-2 , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Absorción Intestinal/efectos de los fármacos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Péptidos/química , Péptidos/farmacología , Aves de Corral , Tracto Gastrointestinal/metabolismo , Digestión , Peptidil-Dipeptidasa A/metabolismo , Disponibilidad Biológica , Dipéptidos/química , Dipéptidos/farmacología , Dipéptidos/metabolismo
5.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786592

RESUMEN

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Asunto(s)
Huesos , Cartílago , Colágeno , Gadiformes , Hidrolisados de Proteína , Animales , Colágeno/metabolismo , Humanos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Células Madre Mesenquimatosas/efectos de los fármacos , Bebidas , Alimentos Funcionales , Hidrólisis
6.
Food Funct ; 15(10): 5566-5578, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38712886

RESUMEN

Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 µM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.


Asunto(s)
Caenorhabditis elegans , Juglans , Fármacos Neuroprotectores , Oligopéptidos , Animales , Juglans/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Ratones , Caenorhabditis elegans/efectos de los fármacos , Células RAW 264.7 , Humanos , Oligopéptidos/farmacología , Oligopéptidos/química , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Especies Reactivas de Oxígeno/metabolismo , Nueces/química , Antioxidantes/farmacología , Antioxidantes/química
7.
Ter Arkh ; 96(3): 266-272, 2024 Apr 16.
Artículo en Ruso | MEDLINE | ID: mdl-38713042

RESUMEN

AIM: To investigate the antitumor effects of human placenta hydrolysate (HPH) peptides on three hormone-dependent human cell lines: prostate adenocarcinoma, breast carcinoma, and ovarian cancer by metabolic analysis of cell cultures. MATERIALS AND METHODS: The effect of HPH on tumor and control tumor cell lines was evaluated. Study stages: (A) de novo peptide sequencing by collision-induced dissociation mass spectrometry; (B) detection of peptides with anti-tumor properties; (C) expert analysis of the obtained lists of peptides. RESULTS: Dose-dependent cytotoxic effects of HPH on three tumor cell lines are shown: PC-3 (human prostate adenocarcinomas), OAW-42 (human ovarian cancer), BT-474 (human breast carcinomas), and IC50 constants (1.3-2.8 mg/ml) were obtained. The analysis of the HPH peptide fraction showed more than 70 peptides with antitumor properties in the composition of this HPH, including kinase inhibitors: mitogen-activated protein kinases, kappa-bi nuclear factor inhibitor kinase, AKT serine/threonine kinase 1, protein kinase C zeta, interleukin-1 receptor-associated kinase 4 and cyclin-dependent kinase 1. CONCLUSION: The results of the study indicate not only the oncological safety of the HPH used in therapy but also the mild antitumor effects of this HPH at high concentrations.


Asunto(s)
Neoplasias de la Mama , Placenta , Neoplasias de la Próstata , Humanos , Femenino , Placenta/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Embarazo , Neoplasias de la Próstata/tratamiento farmacológico , Masculino , Línea Celular Tumoral , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Células PC-3 , Hidrolisados de Proteína/farmacología , Relación Dosis-Respuesta a Droga
8.
Food Chem ; 452: 139466, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735106

RESUMEN

γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.


Asunto(s)
Antiinflamatorios , Péptido 1 Similar al Glucagón , Hidrolisados de Proteína , Gusto , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Animales , Humanos , Bovinos , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/química
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731887

RESUMEN

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Asunto(s)
Ferroptosis , Riñón , Animales , Ferroptosis/efectos de los fármacos , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Envejecimiento/efectos de los fármacos , Lenguado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Línea Celular , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
10.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732526

RESUMEN

Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.


Asunto(s)
Antioxidantes , Inhibidores de Glicósido Hidrolasas , Resistencia a la Insulina , Simulación del Acoplamiento Molecular , Péptidos , Inhibidores de Glicósido Hidrolasas/farmacología , Células Hep G2 , Humanos , Antioxidantes/farmacología , Péptidos/farmacología , Péptidos/química , Grano Comestible , alfa-Glucosidasas/metabolismo , Hidrolisados de Proteína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Hipoglucemiantes/farmacología , Simulación por Computador , Insulina , Ácidos Sulfónicos , Compuestos de Bifenilo , Picratos , Benzotiazoles
11.
Physiol Plant ; 176(3): e14357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775128

RESUMEN

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Asunto(s)
Lactuca , Nitrógeno , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Multiómica
12.
Food Funct ; 15(11): 6082-6094, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38757389

RESUMEN

Flammulina velutipes protein hydrolysates are known for their abundant amino acids and excellent developmental values. This study aimed to identify and screen neuroprotective peptides from F. velutipes protein hydrolysates in vitro and validate the protective effects of YVYAETY on memory impairment in scopolamine-induced mice. The F. velutipes protein was hydrolyzed by simulated gastrointestinal digestion, followed by purification through ultrafiltration and gel chromatography. The fraction exhibiting the strongest neuroprotective activity was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main identified peptides (SDLKPADF, WNDHYY, YVYAETY, and WFHPLF) effectively mitigated excessive ROS production by increasing SOD and GSH-px activities while inhibiting cell apoptosis and mitochondrial membrane potential (MMP) collapse against oxidative stress in Aß25-35-induced HT22 cells. By molecular docking, the interaction between peptides and the active site of the Keap1-Kelch domain reveals their capacity to regulate the Keap1/Nrf2/HO-1 pathway. In vitro, the peptide YVYAETY had the best effect and can be further validated in vivo. The behavioral tests showed that YVYAETY improved scopolamine-induced cognitive impairment in mice. YVYAETY also alleviated neuron damage including neuron vacuolation and pyknotic nuclei in the hippocampus. Furthermore, it significantly inhibited oxidative stress and suppressed the activation of the Nrf2 pathway. Therefore, this study revealed that YVYAETY had the potential to serve as a novel neuroprotective agent.


Asunto(s)
Disfunción Cognitiva , Flammulina , Fármacos Neuroprotectores , Hidrolisados de Proteína , Escopolamina , Animales , Ratones , Escopolamina/efectos adversos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Flammulina/química , Masculino , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Simulación del Acoplamiento Molecular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Apoptosis/efectos de los fármacos
13.
Vopr Pitan ; 93(2): 31-40, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38809797

RESUMEN

The development of innovative ingredients of specialized formula for children with intolerance to cow's milk proteins requires accounting the influence of the protein component on the allergic sensitivity. The aim of the research was to study the effect of lactoferrin (LF) from cow colostrum, cow's milk protein hydrolysate (CMPH) and mare's milk protein hydrolysate (MMPH) on the severity of the systemic anaphylaxis reaction, the levels of specific IgG antibodies and cytokines in rats parenterally sensitized with ovalbumin (OVA). Material and methods. The experiment was carried out on 4 groups of 26 male Wistar rats, which were sensitized intraperitoneally with chicken egg OVA and a systemic anaphylaxis reaction was induced on the day 29 by intravenous administration of a challenge dose of the antigen (6 mg per kg body weight). LF, CMPH and MMPH were introduced into the diet in doses of 1.4-2 g/kg body weight per day (on an average 1.59±0.04, 1.53±0.05 and 1.48±0.05 g per kg body weight respectively). The content of IgG antibodies in the blood serum was determined by an indirect ELISA; the levels of cytokines IL-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12(p70), IL-13, GM-CSF, IFN-γ and TNF-α were detected by multiplex immunoassay. Results. Dietary LF did not have a significant effect on the severity of active anaphylactic shock (AAS), concentrations of antibodies and cytokines in the blood of animals. As a result of CMPH consumption, there were no significant changes in AAS severity and IgG antibodies to OVA but significant increase in TNF-α level was observed as well as a significant decrease in IL-1α (p<0.05). In animals receiving MMPH, there were also no significant changes in the severity of AAS, but a 1.9-fold decrease in the level of IgG antibodies to OVA (p<0.001) was noticed along with a significant increase in IL-12(p70) (p<0.05) and IL-10 (p<0.10) level. Conclusion. Cosumption of LF by sensitized rats didn't significantly affect their anaphylactic sensitivity and cytokine profile, while CMPH intake induced some signs of pro-inflammatory processes. Consumption of MMPH was accompanied by the formation of an anti-inflammatory cytokine profile, which corresponds to a decrease in the intensity of the humoral immune response to the model allergen. Differences in the effects of two hydrolisates, which have similar degrees of hydrolysis, may be associated with the specific composition of glycopeptides formed during the enzymatic cleavage of milk protein produced by these two species of dairy animals.


Asunto(s)
Anafilaxia , Citocinas , Lactoferrina , Hidrolisados de Proteína , Ratas Wistar , Animales , Ratas , Anafilaxia/inmunología , Anafilaxia/inducido químicamente , Masculino , Citocinas/sangre , Citocinas/metabolismo , Lactoferrina/farmacología , Bovinos , Hidrolisados de Proteína/farmacología , Caballos , Leche/química , Inmunoglobulina G/sangre , Hipersensibilidad a la Leche/inmunología , Hipersensibilidad a la Leche/sangre , Femenino
14.
Food Funct ; 15(12): 6578-6596, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38809119

RESUMEN

This study investigated the dual potential of Azolla pinnata fern protein hydrolysates (AFPHs) as functional and nutraceutical ingredients in an oil/water emulsion system. The AFPH-stabilised emulsion (AFPH-E) displayed a small and uniform droplet distribution and was stable to aggregation and creaming over a wide range of pH (5-8), salt concentrations ≤ 100 mM, and heat treatment ≤ 70 °C. Besides, the AFPH-E possessed and maintained strong biological activities, including antihypertensive, antidiabetic, and antioxidant, under different food processing conditions (pH 5-8; NaCl: 50-150 mM, and heat treatment: 30-100 °C). Following in vitro gastrointestinal digestion, the antihypertensive and antioxidant activities were unchanged, while a notable increase of 8% was observed for DPPH. However, the antidiabetic activities were partially reduced in the range of 5-11%. Notably, AFPH-E modulated the gut microbiota and short-chain fatty acids (SCFAs), promoting the growth of beneficial bacteria, particularly Bifidobacteria and Lactobacilli, along with increased SCFA acetate, propionate, and butyrate. Also, AFPH-E up to 10 mg mL-1 did not affect the proliferation of the normal colon cells. In the current work, AFPH demonstrated dual functionality as a plant-based emulsifier with strong biological activities in an oil/water emulsion system and promoted healthy changes in the human gut microbiota.


Asunto(s)
Suplementos Dietéticos , Emulsionantes , Emulsiones , Helechos , Microbioma Gastrointestinal , Hidrolisados de Proteína , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Emulsiones/química , Emulsionantes/farmacología , Emulsionantes/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Helechos/química , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Ácidos Grasos Volátiles/metabolismo
15.
J Microbiol Biotechnol ; 34(5): 1082-1091, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38719776

RESUMEN

The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.


Asunto(s)
Antioxidantes , Apoptosis , Cordyceps , Estrés Oxidativo , Péptidos , Especies Reactivas de Oxígeno , Cordyceps/química , Cordyceps/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Células Hep G2 , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Hidrólisis , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Sustancias Protectoras/farmacología , Peso Molecular , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacología
16.
Pak J Biol Sci ; 27(3): 152-159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38686737

RESUMEN

<b>Background and Objective:</b> Rabbit meat is a livestock product potentially viable as a protein source to obtain peptides. Antioxidant and antimicrobial peptides are ingredients extracted from various foods through enzymatic hydrolysis, chemical hydrolysis and fermentation to produce health-promoting foods. This research aims to investigate the potential of rabbit meat as a source of antioxidant and antimicrobial peptides through hydrolysis using trypsin and zingibain enzymes. <b>Materials and Methods:</b> This research conducted an explorative-descriptive approach, focusing on antioxidant and antimicrobial activity. Rabbit meat was extracted using trypsin, zingibain and a combination of trypsin and crude extract zingibain. The hydrolyzed rabbit meat extract was tested at intervals of 0, 2, 6, 16, 24, 40 and 48 hrs to determine the degree of hydrolysis and the profile of hydrolyzed proteins with electrophoresis SDS PAGE. The antioxidant activity was tested using the DPPH method and the antimicrobial activity using agar well diffusion method. <b>Results:</b> The degree of hydrolysis increased with the hydrolysis time. The highest protein content of rabbit meat extract hydrolyzed with trypsin was 287.65 mg/mL, observed during 12 hrs hydrolysis. The optimum conditions for the hydrolysis of rabbit meat protein were obtained at 24 hrs, with an IC<sub>50</sub> value of 52.45% hydrolyzed by trypsin. As per antimicrobial activities, <i>Escherichia coli</i> and <i>Salmonella</i> sp. were more effective in inhibiting rabbit meat hydrolysates compared to <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>. The inhibition of all pathogen increased until 12 hrs hydrolysis but decreased in 24 hrs hydrolysis. <b>Conclusion:</b> The combination zingibain enzyme and trypsin is feasible for hydrolyzing rabbit meat and the optimum hydrolysis time was 24 hrs with IC<sub>50</sub> 52.45 ppm, although accompanied by reduction in antibacterial activities.


Asunto(s)
Antioxidantes , Carne , Tripsina , Animales , Conejos , Antioxidantes/farmacología , Tripsina/metabolismo , Hidrólisis , Hidrolisados de Proteína/farmacología , Antiinfecciosos/farmacología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos/farmacología , Péptidos/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
17.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667773

RESUMEN

The industrial processing of Argentine shortfin squid to obtain rings generates a significant amount of protein-rich waste, including the skin, which is rich in collagen and attached myofibrillar proteins. This waste is generally discarded. In this study, skin was used as a source of proteins that were hydrolysed using Trypsin, Esperase® or Alcalase®, which released peptides with antioxidant potential and, in particular, antihypertensive (ACE inhibition), hypoglycemic (DPP-IV inhibition) and/or nootropic (PEP inhibition) potential. Among the three enzymes tested, Esperase® and Alcalase produced hydrolysates with potent ACE-, DPP-IV- and PEP-inhibiting properties. These hydrolysates underwent chromatography fractionation, and the composition of the most bioactive fractions was analysed using HPLC-MS-MS. The fractions with the highest bioactivity exhibited very low IC50 values (16 and 66 µg/mL for ACE inhibition, 97 µg/mL for DPP-IV inhibition and 55 µg/mL for PEP inhibition) and were mainly derived from the hydrolysate obtained using Esperase®. The presence of Leu at the C-terminal appeared to be crucial for the ACE inhibitory activity of these fractions. The DPP-IV inhibitory activity of peptides seemed to be determined by the presence of Pro or Ala in the second position from the N-terminus, and Gly and/or Pro in the last C-terminal positions. Similarly, the presence of Pro in the peptides present in the best PEP inhibitory fraction seemed to be important in the inhibitory effect. These results demonstrate that the skin of the Argentine shortfin squid is a valuable source of bioactive peptides, suitable for incorporation into human nutrition as nutraceuticals and food supplements.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Decapodiformes , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Animales , Decapodiformes/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Péptidos/química , Péptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hidrólisis , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Piel , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Antioxidantes/farmacología , Antioxidantes/química
18.
J Agric Food Chem ; 72(17): 10076-10088, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629202

RESUMEN

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.


Asunto(s)
Proteínas de Peces , Peces , Osteoblastos , Ovario , Estrés Oxidativo , Péptidos , Hidrolisados de Proteína , Animales , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Estrés Oxidativo/efectos de los fármacos , Femenino , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Péptidos/química , Péptidos/farmacología , Péptidos/aislamiento & purificación , Proteínas de Peces/química , Proteínas de Peces/farmacología , Proteínas de Peces/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Espectrometría de Masas en Tándem
19.
Food Funct ; 15(10): 5315-5328, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38605685

RESUMEN

In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.


Asunto(s)
Antioxidantes , Juglans , Simulación del Acoplamiento Molecular , Péptidos , Hidrolisados de Proteína , Juglans/química , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Etanol , Receptor Toll-Like 4/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Nueces/química , Espectrometría de Masas en Tándem
20.
Int J Biol Macromol ; 268(Pt 2): 131632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643911

RESUMEN

Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.


Asunto(s)
Productos Finales de Glicación Avanzada , Hordeum , Proteínas de Plantas , Hidrolisados de Proteína , Albúmina Sérica Bovina , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Hordeum/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Albúmina Sérica Bovina/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Animales , Glicosilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...