Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.520
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731449

RESUMEN

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Asunto(s)
Analgésicos , Cannabis , Neuralgia , Paclitaxel , Extractos Vegetales , Animales , Cannabis/química , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Analgésicos/farmacología , Analgésicos/química , Paclitaxel/efectos adversos , Masculino , Metabolómica , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Cannabinoides/farmacología , Multiómica
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731963

RESUMEN

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Asunto(s)
Canales de Calcio Tipo T , Modelos Animales de Enfermedad , Hiperalgesia , Dolor Postoperatorio , Venenos de Escorpión , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Ratones , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Calcio/metabolismo , Masculino , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química
3.
J Headache Pain ; 25(1): 75, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724972

RESUMEN

BACKGROUND: GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS: Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS: Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION: Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.


Asunto(s)
Trastornos Migrañosos , Fenotipo , Ratas Wistar , Receptores de GABA-A , Animales , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/fisiopatología , Ratas , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Masculino , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/fisiopatología , Nitroglicerina/farmacología , Nitroglicerina/toxicidad , Fotofobia/etiología , Fotofobia/fisiopatología
4.
Neuromolecular Med ; 26(1): 12, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600344

RESUMEN

The role of circular RNAs (circRNAs) in neuropathic pain is linked to the fundamental physiological mechanisms involved. However, the exact function of circRNAs in the context of neuropathic pain is still not fully understood. The functional impact of circGRIN2B on the excitability of dorsal root ganglion (DRG) neurons was investigated using siRNA or overexpression technology in conjunction with fluorescence in situ hybridization and whole-cell patch-clamp technology. The therapeutic efficacy of circGRIN2B in treating neuropathic pain was confirmed by assessing the pain threshold in a chronic constrictive injury (CCI) model. The interaction between circGRIN2B and NF-κB was examined through RNA pulldown, RIP, and mass spectrometry assays. CircGRIN2B knockdown significantly affected the action potential discharge frequency and the sodium-dependent potassium current flux (SLICK) in DRG neurons. Furthermore, knockdown of circGRIN2B dramatically reduced the SLICK channel protein and mRNA expression in vivo and in vitro. Our research confirmed the interaction between circGRIN2B and NF-κB. These findings demonstrated that circGRIN2B promotes the transcription of the SLICK gene by binding to NF-κB. In CCI rat models, the overexpression of circGRIN2B has been shown to hinder the progression of neuropathic pain, particularly by reducing mechanical and thermal hyperalgesia. Additionally, this upregulation significantly diminished the levels of the inflammatory cytokines IL-1ß, IL-6, and TNF-α in the DRG. Upon reviewing these findings, it was determined that circGRIN2B may mitigate the onset of neuropathic pain by modulating the NF-κB/SLICK pathway.


Asunto(s)
FN-kappa B , Neuralgia , Ratas , Animales , FN-kappa B/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/uso terapéutico , Ratas Sprague-Dawley , Hibridación Fluorescente in Situ , Neuralgia/terapia , Neuralgia/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Ganglios Espinales/metabolismo
5.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602576

RESUMEN

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Asunto(s)
Cannabidiol , Animales , Ratones , ARN Interferente Pequeño/genética , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Antiinflamatorios , Modelos Animales de Enfermedad , Paclitaxel/toxicidad , Receptores de Cannabinoides/genética
6.
Toxins (Basel) ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38668603

RESUMEN

BACKGROUND: Chronic migraine (CM) is a disabling and hard-to-treat condition, associated with high disability and high cost. Among the preventive treatments, botulinum toxin A (BoNT-a) and monoclonal antibodies against the calcitonin gene-related protein (anti-CGRP mAbs) are the only disease-specific ones. The assessment of the disease burden is complex, and among others, tools such as the allodynia symptoms checklist (ASC-12) and headache impact test (HIT-6) are very useful. This exploratory study analysed the impact of these two therapies on migraine burden. METHODS: The RAMO study was a multicentre, observational, retrospective investigation conducted in two headache centres: the Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan) and the Fondazione Policlinico Campus Bio-Medico (Rome). This study involved patients with chronic migraine treated with mAbs or BoNT-A. We conducted a subgroup exploratory analysis on HIT-6 and ASC-12 scores in the two groups. The Wilcoxon rank-sum test, Fisher's exact test, and ANOVA were performed. RESULTS: Of 126 patients, 36 on mAbs and 90 on BoNT-A had at least one available follow-up. mAbs resulted in a mean reduction of -11.1 and -11.4 points, respectively, in the HIT-6 at 6 and 12 months, while BoNT-A was reduced -3.2 and -3.6 points, respectively; the mAbs arm resulted in mean reductions in ASC-12 at 6 and 12 months of follow-up of -5.2 and -6.0 points, respectively, while BoNT-A showed lesser mean changes of -0.5 and -0.9 points, respectively. The adjusted analysis confirmed our results. CONCLUSIONS: In this exploratory analysis, anti-CGRP mAbs showed superior effectiveness for HIT-6 and ASC12 compared to BoNT-A. Reductions in terms of month headache days (MHD), migraine disability assessment test (MIDAS), and migraine acute medications (MAM) were clinically relevant for both treatments.


Asunto(s)
Anticuerpos Monoclonales , Toxinas Botulínicas Tipo A , Hiperalgesia , Trastornos Migrañosos , Toxinas Botulínicas Tipo A/uso terapéutico , Toxinas Botulínicas Tipo A/inmunología , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/inmunología , Femenino , Masculino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Anticuerpos Monoclonales/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Péptido Relacionado con Gen de Calcitonina/inmunología , Enfermedad Crónica , Resultado del Tratamiento
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673862

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients. One identified mechanism underlying CIPN is neuroinflammation. Most of this research has been conducted in only male or female rodent models, making direct comparisons regarding the role of sex differences in the neuroimmune underpinnings of CIPN limited. Moreover, most measurements have focused on the dorsal root ganglia (DRG) and/or spinal cord, while relatively few studies have been aimed at characterizing neuroinflammation in the brain, for example the periaqueductal grey (PAG). The overall goals of the present study were to determine (1) paclitaxel-associated changes in markers of inflammation in the PAG and DRG in male and female C57Bl6 mice and (2) determine the effect of prophylactic administration of an anti-inflammatory cannabinoid, cannabigerol (CBG). In Experiment 1, male and female mice were treated with paclitaxel (8-32 mg/kg/injection, Days 1, 3, 5, and 7) and mechanical sensitivity was measured using Von Frey filaments on Day 7 (Cohort 1) and Day 14 (Cohort 2). Cohorts were euthanized on Day 8 or 15, respectively, and DRG and PAG were harvested for qPCR analysis of the gene expression of markers of pain and inflammation Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. In Experiment 2, male and female mice were treated with vehicle or 10 mg/kg CBG i.p. 30 min prior to each paclitaxel injection. Mechanical sensitivity was measured on Day 14. Mice were euthanized on Day 15, and PAG were harvested for qPCR analysis of the gene expression of Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. Paclitaxel produced a transient increase in potency to produce mechanical sensitivity in male versus female mice. Regarding neuroinflammation, more gene expression changes were apparent earlier in the DRG and at a later time point in the PAG. Also, more changes were observed in females in the PAG than males. Overall, sex differences were observed for most markers at both time points and regions. Importantly, in both the DRG and PAG, most increases in markers of neuroinflammation and pain occurred at paclitaxel doses higher than those associated with significant changes in the mechanical threshold. Two analytes that demonstrated the most compelling sexual dimorphism and that changed more in males were Cxcl9 and Ccl2, and Tlr4 in females. Lastly, prophylactic administration of CBG protected the male and female mice from increased mechanical sensitivity and female mice from neuroinflammation in the PAG. Future studies are warranted to explore how these sex differences may shed light on the mechanisms of CIPN and how non-psychoactive cannabinoids such as CBG may engage these targets to prevent or attenuate the effects of paclitaxel and other chemotherapeutic agents on the nervous system.


Asunto(s)
Ratones Endogámicos C57BL , Paclitaxel , Animales , Paclitaxel/efectos adversos , Femenino , Masculino , Ratones , Cannabinoides/farmacología , Cannabinoides/administración & dosificación , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Factores Sexuales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Caracteres Sexuales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
8.
Biomed Pharmacother ; 174: 116524, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574622

RESUMEN

This study evaluates the antiallodynic and antihyperalgesic effects of LMH-2, a new haloperidol (HAL) analog that acts as sigma-1 receptor (σ1 R) antagonist, in diabetic mice using a model of neuropathic pain induced by chronic hyperglycemia. Additionally, we compared its effects with those of HAL. Hyperglycemia was induced in mice by nicotinamide-streptozotocin administration (NA-STZ, 50-130 mg/kg). Four weeks later, mechanical allodynia was assessed using the up-down method, and hyperalgesia was evoked with formalin 0.5%. We evaluated antiallodynic and antihyperalgesic effects of LMH-2 (5.6-56.2 mg/kg), HAL (0.018-0.18 mg/kg) and gabapentin (GBP, 5.6-56.2 mg/kg). The results showed that LMH-2 had a more significant antiallodynic effect compared to HAL and GBP (90.4±8.7 vs 75.1±3.1 and 41.9±2.3%, respectively; P<0.05), as well as an antihyperalgesic effect (96.3±1.2 vs 86.9±7.41 and 86.9±4.8%, respectively; P<0.05). Moreover, the antiallodynic and antihyperalgesic effect of both LMH-2 and HAL were completely abolished by PRE-084 (σ1 R agonist); and partially by pramipexole (a D2-like receptor agonist). Finally, the effect of all treatments on the rotarod test, barra, open field and exploratory behaviors showed that LMH-2 did not alter the animals' balance or the exploratory behavior, unlike as HAL or GBP. The molecular docking included indicate that LMH-2 has lower affinity to the D2R than HAL. These results provide evidence that LMH-2 exerts its antinociceptive effects as a σ1 R antagonist without the adverse effects induced by HAL or GBP. Consequently, LMH-2 can be considered a good and safe strategy for treating neuropathic pain caused by hyperglycemia in patients with diabetes.


Asunto(s)
Analgésicos , Diabetes Mellitus Experimental , Haloperidol , Hiperalgesia , Neuralgia , Receptores sigma , Receptor Sigma-1 , Animales , Receptores sigma/antagonistas & inhibidores , Receptores sigma/metabolismo , Haloperidol/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Masculino , Ratones , Analgésicos/farmacología , Neuralgia/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estreptozocina , Relación Dosis-Respuesta a Droga , Gabapentina/farmacología
9.
CNS Neurosci Ther ; 30(4): e14657, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572785

RESUMEN

AIMS: This study aimed to investigate the potential therapeutic applications of stigmasterol for treating neuropathic pain. METHODS: Related mechanisms were investigated by DRG single-cell sequencing analysis and the use of specific inhibitors in cellular experiments. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, CCI group, ibuprofen group, and stigmasterol group. We performed behavioral tests, ELISA, H&E staining and immunohistochemistry, and western blotting. RESULTS: Cell communication analysis by single-cell sequencing reveals that after peripheral nerve injury, Schwann cells secrete IL-34 to act on CSF1R in macrophages. After peripheral nerve injury, the mRNA expression levels of CSF1R pathway and NLRP3 inflammasome in macrophages were increased in DRG. In vitro studies demonstrated that stigmasterol can reduce the secretion of IL-34 in LPS-induced RSC96 Schwann cells; stigmasterol treatment of LPS-induced Schwann cell-conditioned medium (L-S-CM) does not induce the proliferation and migration of RAW264.7 macrophages; L-S-CM reduces CSF1R signaling pathway (CSF1R, P38MAPK, and NFκB) activation, NLRP3 inflammasome activation, and ROS production. In vivo experiments have verified that stigmasterol can reduce thermal and cold hyperalgesia in rat chronic compressive nerve injury (CCI) model; stigmasterol can reduce IL-1ß, IL-6, TNF-α, CCL2, SP, and PGE2 in serum of CCI rats; immunohistochemistry and western blot confirmed that stigmasterol can reduce the levels of IL-34/CSF1R signaling pathway and NLRP3 inflammasome in DRG of CCI rats. CONCLUSION: Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R axis.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Proteína con Dominio Pirina 3 de la Familia NLR , Estigmasterol/farmacología , Estigmasterol/uso terapéutico , Inflamasomas , Lipopolisacáridos , Neuralgia/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Interleucinas , Macrófagos/metabolismo , Células de Schwann/metabolismo
10.
Mol Pain ; 20: 17448069241252654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658141

RESUMEN

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Asunto(s)
Neuropatías Diabéticas , Hiperalgesia , Mitocondrias , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Estreptozocina , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Péptidos/farmacología , Ratones , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Microglía/efectos de los fármacos , Microglía/metabolismo
11.
Int Immunopharmacol ; 133: 112099, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38643709

RESUMEN

Visceral hypersensitivity resulting from compromised gut barrier with activated immune system is a key feature of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and Toll-like receptor 4 (TLR4) activate proinflammatory cytokine signaling to induce these changes, which is one of the mechanisms of IBS. As activation of the NLRP3 inflammasome by lipopolysaccharide (LPS) or TLR4 leads to release interleukin (IL)-1ß, the NLRP3 inflammasome may be involved in the pathophysiology of IBS. Tranilast, an anti-allergic drug has been demonstrated to inhibit the NLRP3 inflammasome, and we evaluated the impact of tranilast on visceral hypersensitivity and colonic hyperpermeability induced by LPS or CRF (IBS rat model). Visceral pain threshold caused by colonic balloon distention was measured by monitoring abdominal muscle contractions electrophysiologically. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue. Colonic protein levels of NLRP3 and IL-1ß were assessed by immunoblot or ELISA. Intragastric administration of tranilast (20-200 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Simultaneously, tranilast also abolished these alterations induced by CRF (50 µg/kg). LPS increased colonic protein levels of NLRP3 and IL-1ß, and tranilast inhibited these changes. ß-hydroxy butyrate, an NLRP3 inhibitor, also abolished visceral hypersensitivity and colonic hyperpermeability caused by LPS. In contrast, IL-1ß induced similar GI alterations to LPS, which were not modified by tranilast. In conclusion, tranilast improved visceral pain and colonic barrier by suppression of the NLRP3 inflammasome in IBS rat models. Tranilast may be useful for IBS treating.


Asunto(s)
Colon , Modelos Animales de Enfermedad , Inflamasomas , Interleucina-1beta , Síndrome del Colon Irritable , Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , ortoaminobenzoatos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico , Interleucina-1beta/metabolismo , Ratas , Permeabilidad/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/metabolismo
12.
Toxicon ; 243: 107717, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38614245

RESUMEN

Cancer-related pain is considered one of the most prevalent symptoms for those affected by cancer, significantly influencing quality of life and treatment outcomes. Morphine is currently employed for analgesic treatment in this case, however, chronic use of this opioid is limited by the development of analgesic tolerance and adverse effects, such as digestive and neurological disorders. Alternative therapies, such as ion channel blockade, are explored. The toxin Phα1ß has demonstrated efficacy in blocking calcium channels, making it a potential candidate for alleviating cancer-related pain. This study aims to assess the antinociceptive effects resulting from intravenous administration of the recombinant form of Phα1ß (r-Phα1ß) in an experimental model of cancer-related pain in mice, tolerant or not to morphine. The model of cancer-induced pain was used to evaluate these effects, with the injection of B16F10 cells, followed by the administration of the r-Phα1ß, and evaluation of the mechanical threshold by the von Frey test. Also, adverse effects were assessed using a score scale, the rotarod, and open field tests. Results indicate that the administration of r-Phα1ß provoked antinociception in animals with cancer-induced mechanical hyperalgesia, with or without morphine tolerance. Previous administration of r-Phα1ß was able to recover the analgesic activity of morphine in animals tolerant to this opioid. r-Phα1ß was proved safe for these parameters, as no adverse effects related to motor and behavioral activity were observed following intravenous administration. This study suggests that the concomitant use of morphine and r-Phα1ß could be a viable strategy for pain modulation in cancer patients.


Asunto(s)
Administración Intravenosa , Dolor en Cáncer , Tolerancia a Medicamentos , Morfina , Animales , Morfina/administración & dosificación , Morfina/uso terapéutico , Morfina/farmacología , Dolor en Cáncer/tratamiento farmacológico , Ratones , Analgésicos/uso terapéutico , Analgésicos/farmacología , Venenos de Araña , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Masculino , Proteínas Recombinantes/uso terapéutico , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico
13.
Neuropharmacology ; 253: 109961, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657947

RESUMEN

This research aims to investigate the possible antiallodynic and antihyperalgesic effects of pure vitexin and vitexin-loaded solid lipid nanoparticles (SLN) on neuropathic pain and the pathways mediating these effects. Chronic constriction nerve injury was induced in female rats, and the effects of vitexin at the doses of 5, 10, 20, 40 mg/kg were evaluated. Ketanserin, ondansetron, WAY-100635, yohimbine and bicuculin, which are antagonists of receptors on pain pathways. were used to examine the mechanisms of the effects of vitexin. Pure vitexin exhibited antiallodynic activity at all administered doses, whereas antihyperalgesic activity was not observed at 5 mg/kg vitexin dose. SLN formulation was prepared with 5 mg/kg vitexin, the lowest dose. Vitexin-loaded formulation significantly increased antiallodynic and antihyperalgesic effects. Ondansetron, WAY-100635, yohimbine, and bicuculine antagonized the antiallodynic and antihyperalgesic effects of vitexin. So, it was concluded that serotonin (5-hydroxtryptamine, 5-HT) receptor subtypes 5-HT3 and 5-HT1A, alpha-2 adrenergic, and γ-Aminobutyric acid type A (GABA-A) receptors are involved in the antiallodynic and antihyperalgesic activity of vitexin. In conclusion, vitexin and vitexin-loaded formulation have the potential for clinical use in neuropathic pain management, and different pain pathways contributed to this effect. And also, it is thought that vitexin-loaded SLN formulation is more effective than pure vitexin, which will provide an advantage in treatment.


Asunto(s)
Analgésicos , Apigenina , Nanopartículas , Neuralgia , Animales , Neuralgia/tratamiento farmacológico , Apigenina/farmacología , Apigenina/administración & dosificación , Femenino , Nanopartículas/administración & dosificación , Analgésicos/administración & dosificación , Analgésicos/farmacología , Ratas , Hiperalgesia/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Ratas Wistar , Modelos Animales de Enfermedad , Lípidos , Liposomas
14.
Braz J Anesthesiol ; 74(3): 844502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38604407

RESUMEN

BACKGROUND: This study aimed to investigate the analgesic impact of S(+)-ketamine on pain behavior and synovial inflammation in an osteoarthritis (OA) model. METHODS: Animals were grouped as follows: OA-Saline (n = 24) and OA-Ketamine (n = 24), OA induced via intra-articular sodium monoiodoacetate (MIA); a Non-OA group (n = 24) served as the control. On the 7th day post OA induction, animals received either saline or S(+)-ketamine (0.5 mg.kg-1). Behavioral and histopathological assessments were conducted up to day 28. RESULTS: S(+)-ketamine reduced allodynia from day 7 to 28 and hyperalgesia from day 10 to 28. It notably alleviated weight distribution deficits from day 10 until the end of the study. Significant walking improvement was observed on day 14 in S(+)-ketamine-treated rats. Starting on day 14, OA groups showed grip force decline, which was countered by S(+)-ketamine on day 21. However, S(+)-ketamine did not diminish synovial inflammation. CONCLUSION: Low Intra-articular (IA) doses of S(+)-ketamine reduced MIA-induced OA pain but did not reverse synovial histopathological changes. IRB APPROVAL NUMBER: 23115 012030/2009-05.


Asunto(s)
Ketamina , Osteoartritis , Ketamina/administración & dosificación , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/inducido químicamente , Ratas , Inyecciones Intraarticulares , Masculino , Analgésicos/administración & dosificación , Ratas Wistar , Dolor/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente
15.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677331

RESUMEN

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Asunto(s)
Ratones Endogámicos ICR , Nicotina , Recompensa , Agonistas del Receptor de Serotonina 5-HT2 , Síndrome de Abstinencia a Sustancias , Animales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Nicotina/farmacología , Nicotina/administración & dosificación , Masculino , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Ratones , Relación Dosis-Respuesta a Droga , Tabaquismo/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/administración & dosificación
16.
Neurol Res ; 46(6): 505-515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569563

RESUMEN

OBJECTIVES: Neuropathic pain is characterized by long-lasting, intractable pain. Sciatic nerve ligation is often used as an animal model of neuropathic pain, and the spared nerve injury (SNI) model, in which the common peroneal nerve (CPN) and tibial nerve (TN) are ligated, is widely used. In the present study, we evaluated the analgesic effect of a cholinergic agonist, carbachol, on a neuropathic pain model prepared by sural nerve (SN) ligation in mice. METHODS: The SN was tightly ligated as a branch of the sciatic nerve. Mechanical and thermal allodynia, and hyperalgesia were assessed using von Frey filaments and heat from a hot plate. The analgesic effects of intracerebroventricularly-administered morphine and carbachol were compared. RESULTS: SN ligation resulted in a significant decrease in pain threshold for mechanical stimulation 1 day after ligation. In response to thermal stimulation, allodynia was observed at 50°C and hyperalgesia at 53 and 56°C 3 days after ligation. Content of thiobarbituric acid reactive substances (TBARS) in the spinal cord increased significantly at 6 and 12 h after ligation. Acetylcholine content of the spinal cord also increased at 5 and 7 days after ligation. Intracerebroventricular administration of carbachol at 7 days after ligation produced a marked analgesic effect against mechanical and thermal stimuli, which was stronger and longer-lasting than morphine at all experimental time points. CONCLUSION: These findings suggest that cholinergic nerves are involved in allodynia and hyperalgesia of the SN ligation neuropathic pain model.


Asunto(s)
Carbacol , Modelos Animales de Enfermedad , Hiperalgesia , Neuralgia , Nervio Sural , Animales , Hiperalgesia/tratamiento farmacológico , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Carbacol/farmacología , Ligadura , Ratones , Nervio Sural/efectos de los fármacos , Agonistas Colinérgicos/farmacología , Umbral del Dolor/efectos de los fármacos , Morfina/farmacología , Analgésicos/farmacología , Dimensión del Dolor , Médula Espinal/efectos de los fármacos , Acetilcolina/metabolismo
17.
J Pharmacol Sci ; 155(2): 63-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677787

RESUMEN

Remimazolam is an ultra-short benzodiazepine that acts on the benzodiazepine site of γ-aminobutyric acid (GABA) receptors in the brain and induces sedation. Although GABA receptors are found localized in the spinal dorsal horn, no previous studies have reported the analgesic effects or investigated the cellular mechanisms of remimazolam on the spinal dorsal horn. Behavioral measures, immunohistochemistry, and in vitro whole-cell patch-clamp recordings of dorsal horn neurons were used to assess synaptic transmission. Intrathecal injection of remimazolam induced behavioral analgesia in inflammatory pain-induced mechanical allodynia (six rats/dose; p < 0.05). Immunohistochemical staining revealed that remimazolam suppressed spinal phosphorylated extracellular signal-regulated kinase activation (five rats/group, p < 0.05). In vitro whole-cell patch-clamp analysis demonstrated that remimazolam increased the frequency of GABAergic miniature inhibitory post-synaptic currents, prolonged the decay time (six rats; p < 0.05), and enhanced GABA currents induced by exogenous GABA (seven rats; p < 0.01). However, remimazolam did not affect miniature excitatory post-synaptic currents or amplitude of monosynaptic excitatory post-synaptic currents evoked by Aδ- and C-fiber stimulation (seven rats; p > 0.05). This study suggests that remimazolam induces analgesia by enhancing GABAergic inhibitory transmission in the spinal dorsal horn, suggesting its potential utility as a spinal analgesic for inflammatory pain.


Asunto(s)
Benzodiazepinas , Células del Asta Posterior , Ratas Sprague-Dawley , Transmisión Sináptica , Animales , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Masculino , Transmisión Sináptica/efectos de los fármacos , Benzodiazepinas/farmacología , Técnicas de Placa-Clamp , Analgésicos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ratas , Inyecciones Espinales , Hiperalgesia/tratamiento farmacológico , Receptores de GABA/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
18.
Drug Des Devel Ther ; 18: 583-595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436039

RESUMEN

Background: Remifentanil-induced hyperalgesia (RIH) increases the risk of persistent postoperative pain, making early postoperative analgesic therapy ineffective and affecting postoperative patient satisfaction. This study aimed to verify the effects of gradual withdrawal of remifentanil combined with postoperative pump infusion of remifentanil on postoperative hyperalgesia and pain in patients undergoing laparoscopic hysterectomy. Methods: This trial was a factorial design, double-blind, randomized controlled trial. Patients undergoing laparoscopic hysterectomy were randomly allocated to the control group, postoperative pump infusion of remifentanil group, gradual withdrawal of remifentanil group, or gradual withdrawal plus postoperative pump infusion of remifentanil group (n = 35 each). The primary outcome was postoperative mechanical pain thresholds in the medial forearm. The secondary outcomes included postoperative mechanical pain thresholds around the incision, pain numeric rating scale scores, analgesic utilization, awakening agitation or sedation scores, a 15-item quality of recovery survey, and postoperative complications. Results: Gradual withdrawal of remifentanil significantly increased postoperative pain thresholds versus abrupt discontinuation (P < 0.05), whereas postoperative infusion did not show significant differences compared to the absence of infusion (P > 0.05). The combined gradual withdrawal and postoperative infusion group exhibited the highest thresholds and had the lowest postoperative pain scores and analgesic requirements as well as the highest quality of recovery scores (P < 0.05). No significant differences were observed for agitation scores, sedation scores, or complication rates (P > 0.05). Conclusion: The novel combined gradual withdrawal and postoperative infusion of remifentanil uniquely attenuates postoperative hyperalgesia, pain severity, analgesic necessity, and improves recovery quality after laparoscopic hysterectomy.


Asunto(s)
Hiperalgesia , Laparoscopía , Femenino , Humanos , Remifentanilo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Método Doble Ciego , Histerectomía/efectos adversos , Dolor Postoperatorio/tratamiento farmacológico , Analgésicos , Laparoscopía/efectos adversos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38508408

RESUMEN

Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.


Asunto(s)
Cannabidiol , Neuralgia , Neuralgia del Trigémino , Animales , Masculino , Ratas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Dolor Facial/metabolismo , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Ratas Wistar , Neuralgia del Trigémino/complicaciones , Neuralgia del Trigémino/tratamiento farmacológico
20.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474148

RESUMEN

Pain is an unpleasant sensory and emotional experience accompanied by tissue injury. Often, an individual's experience can be influenced by different physiological, psychological, and social factors. Fibromyalgia, one of the most difficult-to-treat types of pain, is characterized by general muscle pain accompanied by obesity, fatigue, sleep, and memory and psychological concerns. Fibromyalgia increases nociceptive sensations via central sensitization in the brain and spinal cord level. We used intermittent cold stress to create a mouse fibromyalgia pain model via a von Frey test (day 0: 3.69 ± 0.14 g; day 5: 2.13 ± 0.12 g). Mechanical pain could be reversed by eicosapentaenoic acid (EPA) administration (day 0: 3.72 ± 0.14 g; day 5: 3.69 ± 0.13 g). A similar trend could also be observed for thermal hyperalgesia. The levels of elements in the transient receptor potential V1 (TRPV1) signaling pathway were increased in the ascending pain pathway, including the thalamus, medial prefrontal cortex, somatosensory cortex, anterior cingulate cortex, and cerebellum. EPA intake significantly attenuated this overexpression. A novel chemogenetics method was used to inhibit SSC and ACC activities, which presented an analgesic effect through the TRPV1 downstream pathway. The present results provide insights into the role of the TRPV1 signaling pathway for fibromyalgia and its potential as a clinical target.


Asunto(s)
Fibromialgia , Animales , Ratones , Encéfalo , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Fibromialgia/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA