Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.655
Filtrar
1.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767703

RESUMEN

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Asunto(s)
Exosomas , Integrina beta1 , MicroARNs , Telocitos , Proteína de Unión al GTP rac1 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Exosomas/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Ratones , Telocitos/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipoxia/metabolismo , Hipoxia/genética , Hipoxia/complicaciones , Proliferación Celular/genética , Movimiento Celular/genética , Humanos , Remodelación Vascular/genética , Neuropéptidos
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731946

RESUMEN

Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología , Animales , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Biomarcadores , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Modelos Animales de Enfermedad , Investigación Biomédica Traslacional , Transducción de Señal
6.
Respir Res ; 25(1): 192, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702687

RESUMEN

This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.


Asunto(s)
Análisis de la Célula Individual , Humanos , Animales , Análisis de la Célula Individual/métodos , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/patología , Análisis de Secuencia de ARN/métodos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología
9.
Arq Bras Cardiol ; 121(4): e20230565, 2024.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-38695472

RESUMEN

Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis are rare types of histopathological substrates within the spectrum of pulmonary arterial hypertension (PAH) with a very poor prognosis. They are characterized by a widespread fibroproliferative process of the small caliber veins and/or capillaries with sparing of the larger veins, resulting in a pre-capillary pulmonary hypertension phenotype. Clinical presentation is unspecific and similar to other PAH etiologies. Definitive diagnosis is obtained through histological analysis, although lung biopsy is not advised due to a higher risk of complications. However, some additional findings may allow a presumptive clinical diagnosis of PVOD, particularly a history of smoking, chemotherapy drug use, exposure to organic solvents (particularly trichloroethylene), low diffusing capacity for carbon monoxide (DLCO), exercise induced desaturation, and evidence of venous congestion without left heart disease on imaging, manifested by a classical triad of ground glass opacities, septal lines, and lymphadenopathies. Lung transplant is the only effective treatment, and patients should be referred at the time of diagnosis due to the rapid progression of the disease and associated poor prognosis. We present a case of a 58-year-old man with PAH with features of venous/capillary involvement in which clinical suspicion, prompt diagnosis, and early referral for lung transplantation were determinant factors for the successful outcome.


A doença veno-oclusiva pulmonar (DVOP) e a hemangiomatose capilar pulmonar são tipos raros de substratos histopatológicos dentro do espectro da hipertensão arterial pulmonar (HAP) com prognóstico muito ruim. Caracterizam-se por um processo fibroproliferativo generalizado das veias e/ou capilares de pequeno calibre com preservação das veias maiores, resultando em um fenótipo de hipertensão pulmonar pré-capilar. A apresentação clínica é inespecífica e semelhante a outras etiologias de HAP. O diagnóstico definitivo é obtido por meio de análise histológica, embora a biópsia pulmonar não seja aconselhada devido ao maior risco de complicações. No entanto, alguns achados adicionais podem permitir um diagnóstico clínico presuntivo de DVOP, especialmente história de tabagismo, uso de drogas quimioterápicas, exposição a solventes orgânicos (particularmente tricloroetileno), baixa capacidade de difusão do monóxido de carbono (DLCO), dessaturação ao esforço e evidências de doença venosa sem doença cardíaca esquerda no exame de imagem, manifestada por uma tríade clássica de opacidades em vidro fosco, linhas septais, e linfadenopatias. O transplante pulmonar é o único tratamento eficaz e os pacientes devem ser encaminhados no momento do diagnóstico, devido à rápida progressão da doença e ao prognóstico ruim. Apresentamos o caso de um homem de 58 anos com HAP com características de envolvimento venoso/capilar em que a suspeita clínica, o pronto diagnóstico e o encaminhamento precoce para transplante pulmonar foram determinantes para um bom desfecho.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Veno-Oclusiva Pulmonar/diagnóstico por imagen , Hipertensión Arterial Pulmonar/etiología , Hipertensión Pulmonar/etiología
10.
BMC Pulm Med ; 24(1): 235, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745167

RESUMEN

BACKGROUND: Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD: An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS: Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION: The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.


Asunto(s)
Microbioma Gastrointestinal , Análisis de la Aleatorización Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/microbiología , Estudio de Asociación del Genoma Completo , Disbiosis/genética , Polimorfismo de Nucleótido Simple
11.
Clin Respir J ; 18(5): e13771, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747117

RESUMEN

BACKGROUND: Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS: Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS: CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION: CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.


Asunto(s)
Apoptosis , Proliferación Celular , MicroARNs , Hipertensión Arterial Pulmonar , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Animales , ARN Circular/genética , ARN Circular/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Modelos Animales de Enfermedad , Miocitos del Músculo Liso/metabolismo , Masculino , Movimiento Celular/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Células Cultivadas , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología
15.
Cardiol Clin ; 42(2): 273-278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631794

RESUMEN

Pulmonary hypertension is a challenging disease entity with various underlying etiologies. The management of patients with pulmonary arterial hypertension (WHO Group 1) remains challenging especially in the critical care setting. With risk of high morbidity and mortality, these patients require a multidisciplinary team approach at a speciality care facility for pulmonary hypertension for comprehensive evaluation and rapid initiation of treatment. For acute decompensated right heart failure, management should concentrate on optimizing preload and after load with use of pulmonary vasodilator therapy. A careful evaluation of specialized situations is required for appropriate treatment response.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Urgencias Médicas , Vasodilatadores/uso terapéutico , Cuidados Críticos
16.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632547

RESUMEN

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Asunto(s)
Microbioma Gastrointestinal , Metilaminas , Hipertensión Arterial Pulmonar , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hipertensión Pulmonar Primaria Familiar , Colina
17.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577988

RESUMEN

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Asunto(s)
Interleucina-17 , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratas , Proliferación Celular , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-6/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo
18.
Eur J Med Res ; 29(1): 209, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561801

RESUMEN

BACKGROUND: Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION: A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS: This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.


Asunto(s)
Hipertensión Arterial Pulmonar , Femenino , Humanos , Adulto , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Arterial Pulmonar/genética , Fenotipo , Mutación , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo
19.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622371

RESUMEN

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratones , Humanos , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Arteria Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , ARN Interferente Pequeño/metabolismo , Autofagia/genética , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular
20.
Respir Res ; 25(1): 183, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664728

RESUMEN

BACKGROUND: Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS: Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS: NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/ß-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION: This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.


Asunto(s)
Proliferación Celular , Trampas Extracelulares , Miocitos del Músculo Liso , Ratas Sprague-Dawley , Animales , Ratas , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proliferación Celular/fisiología , Humanos , Masculino , Trampas Extracelulares/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Células Cultivadas , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA