RESUMEN
Hypertriglyceridemia is a risk factor for type 2 diabetes and cardiovascular disease (CVD). Plasma triglycerides (TGs) are a key factor for assessing the risk of diabetes or CVD. However, previous lipidomics studies have demonstrated that not all TG molecules behave the same way. Individual TGs with different fatty acid compositions are regulated differentially under various conditions. In addition, distinct groups of TGs were identified to be associated with increased diabetes risk (TGs with lower carbon number [C#] and double-bond number [DB#]), or with decreased risk (TGs with higher C# and DB#). In this study, we examined the effects of high-fat feeding in rats on plasma lipid profiles with special attention to TG profiles. Wistar rats were maintained on either a low-fat (control) or high-fat diet (HFD) for 2 weeks. Plasma samples were obtained before and 2.5 h after a meal (n = 10 each) and subjected to lipidomics analyses. High-fat feeding significantly impacted circulating lipid profiles, with the most significant effects observed on TG profile. The effects of an HFD on individual TG species depended on DB# in their fatty acid chains; an HFD increased TGs with low DB#, associated with increased diabetes risk, but decreased TGs with high DB#, associated with decreased risk. These changes in TGs with an HFD were associated with decreased indices of hepatic stearoyl-CoA desaturase (SCD) activity, assessed from hepatic fatty acid profiles. Decreased SCD activity would reduce the conversion of saturated to monounsaturated fatty acids, contributing to the increases in saturated TGs or TGs with low DB#. In addition, an HFD selectively depleted ω-3 polyunsaturated fatty acids (PUFAs), contributing to the decreases in TGs with high DB#. Thus, an HFD had profound impacts on circulating TG profiles. Some of these changes were at least partly explained by decreased hepatic SCD activity and depleted ω-3 PUFA.
Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Ratas Wistar , Triglicéridos , Animales , Triglicéridos/sangre , Triglicéridos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/sangre , Dieta Alta en Grasa/efectos adversos , Ratas , Masculino , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/sangre , Hipertrigliceridemia/etiología , LipidómicaRESUMEN
We compared 2 models of metabolic syndrome in rats: high-fat diet (58% calories) with single streptozotocin injection at a dose of 25 mg/kg and replacement of water with 20% fructose solution. The model with fructose solution did not cause the main signs of metabolic syndrome over 24 weeks: concentrations of glucose, triglycerides, cholesterol, weight, and BP did not significantly differ from the control group (standard diet). At the same time, single streptozotocin administration was followed by the development of persistent hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and signs of visceral obesity. High-fat diet combined with injection of streptozotocin in a low dose can be considered a more representative model of metabolic syndrome in humans.
Asunto(s)
Glucemia , Dieta Alta en Grasa , Síndrome Metabólico , Estreptozocina , Triglicéridos , Animales , Dieta Alta en Grasa/efectos adversos , Ratas , Masculino , Síndrome Metabólico/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Glucemia/metabolismo , Ratas Wistar , Hiperglucemia/metabolismo , Hiperglucemia/inducido químicamente , Colesterol/sangre , Colesterol/metabolismo , Peso Corporal/efectos de los fármacos , Fructosa/administración & dosificación , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/sangre , Hipertrigliceridemia/etiología , Hipercolesterolemia/metabolismo , Hipercolesterolemia/etiología , Carbohidratos de la Dieta/administración & dosificación , Presión Sanguínea/efectos de los fármacosRESUMEN
In recent years, novel apoC3 inhibitor therapies for the treatment of hypertriglyceridemia have been developed and assessed through phase II and III clinical trials. The objective of this study was to perform an updated meta-analysis on the impact of new apoC3 inhibitor drugs on triglyceride and apoC3 levels, as well as on the incidence of pancreatitis. We conducted a meta-analysis of randomized, placebo-controlled studies assessing the effects of apoC3 inhibitors therapy (antisense oligonucleotides and small interfering RNA) on triglyceride levels, apoC3 levels, and the occurrence of acute pancreatitis. This meta-analysis was performed according to PRISMA guidelines. The random-effects model was performed. Nine randomized clinical trials (n = 717 patients) were considered eligible for this systematic review. ApoC3 inhibitor drugs were consistently associated with decreased triglyceride levels (MD -57.0%; 95% CI -61.9 to -52.1, I2 82%) and lowered apoC3 values (MD -76; 95% CI -80.1 to -71.8, I2 77%) when compared to placebo. Furthermore, the use of apoC3 inhibitor drugs demonstrated a reduction in the risk of acute pancreatitis (OR 0.11; 95% CI 0.04 to 0.27, I2 0%). The present updated meta-analysis of randomized clinical trials demonstrated that the utilization of apoC3 inhibitors in patients with hypertriglyceridemia correlated with reduced apoC3 and triglyceride levels, along with a decreased risk of acute pancreatitis compared to the placebo.
Asunto(s)
Apolipoproteína C-III , Hipertrigliceridemia , Pancreatitis , Triglicéridos , Humanos , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/sangre , Hipertrigliceridemia/sangre , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Pancreatitis/epidemiología , Pancreatitis/metabolismo , Pancreatitis/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Triglicéridos/sangre , Triglicéridos/metabolismoRESUMEN
This study aimed to investigate metabolism modulation and dyslipidemia in genetic dyslipidemic mice through physical exercise. Thirty-four male C57Bl/6 mice aged 15 months were divided into non-transgenic (NTG) and transgenic overexpressing apoCIII (CIII) groups. After treadmill adaptation, the trained groups (NTG Ex and CIII Ex) underwent an effort test to determine running performance and assess oxygen consumption (VÌO2), before and after the training protocol. The exercised groups went through an 8-week moderate-intensity continuous training (MICT) program, consisting of 40 min of treadmill running at 60% of the peak velocity achieved in the test, three times per week. At the end of the training, animals were euthanized, and tissue samples were collected for ex vivo analysis. ApoCIII overexpression led to hypertriglyceridemia (P<0.0001) and higher concentrations of total plasma cholesterol (P<0.05), low-density lipoprotein (LDL) cholesterol (P<0.01), and very low-density lipoprotein (VLDL) cholesterol (P<0.0001) in the animals. Furthermore, the transgenic mice exhibited increased adipose mass (P<0.05) and higher VÌO2peak compared to their NTG controls (P<0.0001). Following the exercise protocol, MICT decreased triglyceridemia and cholesterol levels in dyslipidemic animals (P<0.05), and reduced adipocyte size (P<0.05), increased muscular glycogen (P<0.001), and improved VÌO2 in all trained animals (P<0.0001). These findings contribute to our understanding of the effects of moderate and continuous exercise training, a feasible non-pharmacological intervention, on the metabolic profile of genetically dyslipidemic subjects.
Asunto(s)
Dislipidemias , Consumo de Oxígeno , Condicionamiento Físico Animal , Triglicéridos , Animales , Masculino , Ratones , Dislipidemias/metabolismo , Dislipidemias/terapia , Dislipidemias/genética , Hipertrigliceridemia/terapia , Hipertrigliceridemia/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Consumo de Oxígeno/fisiología , Condicionamiento Físico Animal/fisiología , Triglicéridos/sangreRESUMEN
Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.
Asunto(s)
Regulación hacia Abajo , Hipertrigliceridemia , Lipoproteína Lipasa , Receptor PAR-2 , Animales , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Ratones , Humanos , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Masculino , Ratones Noqueados , Triglicéridos/metabolismo , Triglicéridos/sangre , Tejido Adiposo Blanco/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Adipocitos/metabolismo , Obesidad/metabolismo , Obesidad/genética , Ácido Palmítico/metabolismo , Femenino , Ratones Endogámicos C57BL , Persona de Mediana EdadRESUMEN
Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism. Biochemical studies revealed that APOA5 binds to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppresses its ability to inhibit the activity of lipoprotein lipase (LPL). Thus, APOA5 deficiency is accompanied by increased ANGPTL3/8 activity and lower levels of LPL activity. APOA5 deficiency also reduces amounts of LPL in capillaries of oxidative tissues (e.g., heart, brown adipose tissue). Cell culture experiments revealed the likely explanation: ANGPTL3/8 detaches LPL from its binding sites on the surface of cells, and that effect is blocked by APOA5. Both the low intracapillary LPL levels and the high plasma triglyceride levels in Apoa5-/- mice are normalized by recombinant APOA5. Carboxyl-terminal sequences in APOA5 are crucial for its function; a mutant APOA5 lacking 40-carboxyl-terminal residues cannot bind to ANGPTL3/8 and lacks the ability to change intracapillary LPL levels or plasma triglyceride levels in Apoa5-/- mice. Also, an antibody against the last 26 amino acids of APOA5 reduces intracapillary LPL levels and increases plasma triglyceride levels in wild-type mice. An inhibitory ANGPTL3/8-specific antibody functions as an APOA5-mimetic reagent, increasing intracapillary LPL levels and lowering plasma triglyceride levels in both Apoa5-/- and wild-type mice. That antibody is a potentially attractive strategy for treating elevated plasma lipid levels in human patients.
Asunto(s)
Apolipoproteína A-V , Hipertrigliceridemia , Lipoproteína Lipasa , Animales , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Capilares/metabolismo , Ratones , Triglicéridos/metabolismo , Triglicéridos/sangreRESUMEN
Lipid disorders represent one of the most worrisome cardiovascular risk factors. The focus on the impact of lipids on cardiac and vascular health usually concerns low-density lipoprotein cholesterol, while the role of triglycerides (TGs) is given poor attention. The literature provides data on the impact of higher plasma concentrations in TGs on the cardiovascular system and, therefore, on the outcomes and comorbidities of patients. The risk for coronary heart diseases varies from 57 to 76% in patients with hypertriglyceridemia. Specifically, the higher the plasma concentrations in TGs, the higher the incidence and prevalence of death, myocardial infarction, and stroke. Nevertheless, the metabolism of TGs and the exact physiopathologic mechanisms which try to explain the relationship between TGs and cardiovascular outcomes are not completely understood. The aims of this narrative review were as follows: to provide a comprehensive evaluation of the metabolism of triglycerides and a possible suggestion for understanding the targets for counteracting hypertriglyceridemia; to describe the inner physiopathological background for the relationship between vascular and cardiac damages derived from higher plasma concentrations in TGs; and to outline the need for promoting further insights in therapies for reducing TGs plasma levels.
Asunto(s)
Hipertrigliceridemia , Triglicéridos , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/sangre , Hipertrigliceridemia/genética , Triglicéridos/sangre , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Metabolismo de los Lípidos/genética , Factores de RiesgoRESUMEN
Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.
Asunto(s)
Corticosterona , Dinoprostona , Epinefrina , Factores de Crecimiento de Fibroblastos , Glucagón , Ácidos Linoleicos Conjugados , Ratones Transgénicos , Animales , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Corticosterona/metabolismo , Dinoprostona/metabolismo , Glucagón/metabolismo , Epinefrina/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/genética , Lipólisis/efectos de los fármacos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Adiposidad/efectos de los fármacosRESUMEN
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Asunto(s)
Lipoproteínas VLDL , Triglicéridos , Animales , Humanos , Apolipoproteínas B/metabolismo , Aterosclerosis/metabolismo , Quilomicrones/metabolismo , Hipertrigliceridemia/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismoRESUMEN
Ferroptosis is closely associated with inflammatory diseases, including acute pancreatitis (AP); however, the involvement of ferroptosis in hypertriglyceridemic pancreatitis (HTGP) remains unclear. In the present study, we aimed to explore the relationship between lipid metabolism and ferroptosis in HTGP and the alleviating effect of liproxstatin-1 (Lip-1) in vivo. This study represents the first exploration of lipid metabolism and endoplasmic reticulum stress (ERS) in HTGP, targeting ferroptosis as a key factor in HTGP. Hypertriglyceridemia (HTG) was induced under high-fat diet conditions. Cerulein was then injected to establish AP and HTGP models. Lip-1, a specific ferroptosis inhibitor, was administered before the induction of AP and HTGP in rats, respectively. Serum triglyceride, amylase, inflammatory factors, pathological and ultrastructural structures, lipid peroxidation, and iron overload indicators related to ferroptosis were tested. Moreover, the interaction between ferroptosis and ERS was assessed. We found HTG can exacerbate the development of AP, with an increased inflammatory response and intensified ferroptosis process. Lip-1 treatment can attenuate pancreatic injury by inhibiting ferroptosis through lipid metabolism and further resisting activations of ERS-related proteins. Totally, our results proved lipid metabolism can promote ferroptosis in HTGP by regulating ACSL4/LPCAT3 protein levels. Additionally, ERS may participate in ferroptosis via the Bip/p-EIF2α/CHOP pathway, followed by the alleviating effect of Lip-1 in the rat model.
Asunto(s)
Estrés del Retículo Endoplásmico , Ferroptosis , Hipertrigliceridemia , Metabolismo de los Lípidos , Pancreatitis , Quinoxalinas , Compuestos de Espiro , Animales , Ferroptosis/efectos de los fármacos , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Ratas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Ciclohexilaminas/farmacología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Peroxidación de Lípido/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismoRESUMEN
PURPOSE OF REVIEW: Hypertriglyceridemia (HTG) is an independent and casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with HTG. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are key regulators of triglyceride-rich lipoprotein (TRL) metabolism. We review recent clinical trials targeting ANGPTL3 and apoC-III with monoclonal antibody and nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS: ANGPTL3 and apoC-III inhibitors are effective in lowering plasma triglycerides and TRLs, with possibly greater efficacy with the inhibition of apoC-III. By contrast to ANGPTL3 inhibition that has the advantage of greater lowering of plasma low-density lipoprotein (LDL)-cholesterol and apoB levels, apoC-III inhibition only has a modest or no effect in lowering plasma LDL-cholesterol and apoB concentrations. Therapeutic inhibition of ANGPTL3 and apoC-III can correct HTG possibly by reducing production and increasing catabolism of TRL particles, but this remains to be formally investigated in patients with HTG. SUMMARY: Novel agents targeting ANGPTL3 and apoC-III can correct HTG and potentially lower risk of ASCVD in patients with HTG. The long-term safety and cost-effectiveness of these agents await confirmation in ongoing and future studies.
Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas , Apolipoproteína C-III , Hipertrigliceridemia , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/sangre , Apolipoproteína C-III/metabolismo , Humanos , Proteínas Similares a la Angiopoyetina/antagonistas & inhibidores , Proteínas Similares a la Angiopoyetina/metabolismo , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/sangre , Hipertrigliceridemia/metabolismo , Angiopoyetinas/metabolismo , Angiopoyetinas/antagonistas & inhibidores , Animales , Triglicéridos/sangre , Triglicéridos/metabolismo , Ensayos Clínicos como AsuntoRESUMEN
Triglycerides have long been recognized as a cardiovascular disease risk factor. However, their precise role in atherosclerosis and potential utility as a therapeutic target remains debated topics. This review aims to shed light on these aspects by exploring the complex relationship between triglycerides and atherosclerosis from pathophysiological and pharmacological perspectives. Triglycerides, primarily carried by chylomicrons and very low-density lipoproteins, play an essential role in energy storage and utilization. Dysregulation of triglyceride homeostasis and triglyceride- rich lipoproteins metabolism often leads to hypertriglyceridemia and subsequently increases atherosclerosis risk. Triglyceride-rich lipoproteins remnants interact with arterial wall endothelial cells, get retained in the subendothelial space, and elicit inflammatory responses, thereby accelerating atherogenesis. Despite the clear association between high triglyceride levels and increased cardiovascular disease risk, intervention trials targeting triglyceride reduction have produced mixed results. We discuss a range of triglyceride-lowering agents, from fibrates to omega-3 fatty acids, with a focus on their mechanism of action, efficacy, and major clinical trial outcomes. Notably, the role of newer agents, such as angiopoietin-like protein 3 and apolipoprotein C3 inhibitors, is also explored. We highlight the challenges and controversies, including the ongoing debate on the causal role of triglyceride in atherosclerosis and the discordant outcomes of recent clinical trials. The potential confounding effects of associated risk factors, such as elevated apolipoprotein B, insulin resistance, and metabolic syndrome, are considered. In conclusion, this review underscores the importance of a nuanced approach to understanding the role of triglycerides in atherosclerosis and their potential as a therapeutic target. Further research is needed to unravel the complex interplay between triglycerides, triglyceride-rich lipoproteins, and associated factors in atherosclerosis pathogenesis and refine triglyceride-targeted therapeutic strategies.
Asunto(s)
Aterosclerosis , Hipolipemiantes , Triglicéridos , Humanos , Aterosclerosis/terapia , Aterosclerosis/metabolismo , Aterosclerosis/etiología , Triglicéridos/metabolismo , Hipolipemiantes/uso terapéutico , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/terapia , Hipertrigliceridemia/metabolismoRESUMEN
There is no strong evidence that any specific diet is the preferred treatment for lipodystrophy syndromes. Here we remark on the benefits of a very-low-calorie diet (VLCD) in a patient with familial partial lipodystrophy type 2 (FPLD2). A 38-year-old female diagnosed with FPLD2, with a history of multiple comorbidities, underwent 16 weeks of VLCD with a short-term goal of improving her metabolic state rapidly to achieve pregnancy by in vitro fertilization (IVF). We observed a reduction of 12.3 kg in body weight and 1.4% in hemoglobin A1c. The decrease in the area under the curves of insulin (-33.2%), triglycerides (-40.7%), and free fatty acids (-34%) were very remarkable. Total body fat was reduced by 16%, and liver fat by 80%. Her egg retrieval rate and quality during IVF were far superior to past hyperstimulation. Our data encourage the use of this medical approach for other patients with similar metabolic and reproductive abnormalities due to adipose tissue insufficiency.
Asunto(s)
Diabetes Mellitus , Hipertrigliceridemia , Lipodistrofia Parcial Familiar , Humanos , Femenino , Adulto , Lipodistrofia Parcial Familiar/complicaciones , Lipodistrofia Parcial Familiar/metabolismo , Restricción Calórica , Tejido Adiposo/metabolismo , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/metabolismoRESUMEN
PURPOSE OF REVIEW: The role of the inhibition of ANGPTL3 in severe or refractory hypercholesterolemia is well documented, less in severe hyperTG. This review focuses on the preclinical and clinical development of ApoC-III inhibitors and ANGPTL3, 4, and 3/8 complex inhibitors for the treatment of severe or refractory forms of hypertriglyceridemia to prevent cardiovascular disease or other morbidities. RECENT FINDINGS: APOC3 and ANGPTL3 became targets for drug development following the identification of naturally occurring loss of function variants in families with a favorable lipid profile and low cardiovascular risk. The inhibition of ANGPTL3 covers a broad spectrum of lipid disorders from severe hypercholesterolemia to severe hypertriglyceridemia, while the inhibition of ApoC-III can treat hypertriglyceridemia regardless of the severity. Preclinical and clinical data suggest that ApoC-III inhibitors, ANGPTL3 inhibitors, and inhibitors of the ANGPTL3/8 complex that is formed postprandially are highly effective for the treatment of severe or refractory hypertriglyceridemia. Inhibition of ANGPTL3 or the ANGPTL3/8 complex upregulates LPL and facilitates the hydrolysis and clearance of triglyceride-rich lipoproteins (TRL) (LPL-dependent mechanisms), whereas ApoC-III inhibitors contribute to the management and clearance of TRL through both LPL-dependent and LPL-independent mechanisms making it possible to successfully lower TG in subjects completely lacking LPL (familial chylomicronemia syndrome). Most of these agents are biologicals including monoclonal antibodies (mAb), antisense nucleotides (ASO), small interfering RNA (siRNA), or CRISPR-cas gene editing strategies.
Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Humanos , Proteína 3 Similar a la Angiopoyetina , Apolipoproteína C-III/genética , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Triglicéridos/metabolismoRESUMEN
As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet ß cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet ß cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet ß cell function, and the underlying mechanism remains to be further discussed.
Asunto(s)
Apolipoproteína C-III , Glucosa , Islotes Pancreáticos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Glucosa/metabolismo , Humanos , Animales , Hipertrigliceridemia/metabolismo , Islotes Pancreáticos/metabolismoRESUMEN
Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.
Asunto(s)
Apolipoproteína A-V , Hipertrigliceridemia , Receptores de Lipoproteína , Animales , Ratones , Capilares/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Triglicéridos/sangre , Apolipoproteína A-V/genéticaRESUMEN
OBJECTIVE: Among fibrates as triglyceride-lowering agents, bezafibrate and fenofibrate are predominantly renally excreted, while pemafibrate is mainly hepatically metabolized and biliary excreted. To elucidate possible different properties among fibrates, this retrospective observational study examined the changes in clinical laboratory parameters, including indices of renal function and glucose metabolism, in cases of switching from bezafibrate to pemafibrate. MATERIALS AND METHODS: In 93 patients with hypertriglyceridemia, the average values of laboratory parameters including serum creatinine, estimated glomerular filtration rate (eGFR), plasma glucose, and hemoglobin A1c on respective two occasions before and after switching from bezafibrate to pemafibrate were evaluated. RESULTS: Triglycerides, low-density and high-density lipoprotein cholesterol, creatine kinase, and uric acid did not change before and after switching from bezafibrate to pemafibrate. Serum creatinine significantly decreased and eGFR significantly increased after switching from bezafibrate to pemafibrate (p < 0.001, respectively). Plasma glucose tended to increase (p = 0.070) and hemoglobin A1c significantly increased (p < 0.001) after switching to pemafibrate. The degrees of changes in creatinine, eGFR, glucose, and hemoglobin A1c before and after drug switching were not affected by the presence or absence of coexisting disease, and with or without drug treatment including statin and renin-angiotensin system inhibitor. CONCLUSION: Our findings indicate that switching from bezafibrate to pemafibrate produces a significant decrease in serum creatinine and increases in eGFR and hemoglobin A1c in patients with hypertriglyceridemia, suggesting that the effects on renal function and glucose metabolism differ among fibrates.
Asunto(s)
Bezafibrato , Hipertrigliceridemia , Humanos , Bezafibrato/efectos adversos , Glucemia , Hemoglobina Glucada , Creatinina , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Triglicéridos/metabolismo , Triglicéridos/uso terapéutico , Ácidos Fíbricos/uso terapéutico , Glucosa/uso terapéutico , Riñón/fisiologíaRESUMEN
In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Pancreatitis , Humanos , Glicosilfosfatidilinositoles/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Enfermedad Aguda , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/metabolismo , Proteínas Portadoras/metabolismo , Triglicéridos , Lipoproteínas LDL/metabolismo , Lipoproteínas HDL , Proteína 3 Similar a la Angiopoyetina , ProteínasRESUMEN
Mammalian target of rapamycin complex 2 (mTORC2) is a protein kinase complex that plays an important role in energy homeostasis. Loss of adipose mTORC2 reduces lipogenic enzyme expression and de novo lipogenesis in adipose tissue. Adipose-specific mTORC2 knockout mice also display triglyceride accumulation in the liver. However, the mechanism and physiological role of hepatic triglyceride accumulation upon loss of adipose mTORC2 are unknown. Here, we show that loss of adipose mTORC2 increases the expression of de novo lipogenic enzymes in the liver, thereby causing accumulation of hepatic triglyceride and hypertriglyceridemia. Simultaneous inhibition of lipogenic enzymes in adipose tissue and liver by ablating mTORC2 in both tissues prevented accumulation of hepatic triglycerides and hypertriglyceridemia. However, loss of adipose and hepatic mTORC2 caused severe insulin resistance and glucose intolerance. Thus our findings suggest that increased hepatic lipogenesis is a compensatory mechanism to cope with loss of lipogenesis in adipose tissue, and further suggest that mTORC2 in adipose tissue and liver plays a crucial role in maintaining whole body energy homeostasis.NEW & NOTEWORTHY Loss of adipose and hepatic mTORC2 causes diabetes.
Asunto(s)
Hipertrigliceridemia , Hígado , Ratones , Animales , Hígado/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Lipogénesis/genética , Obesidad/metabolismo , Glucosa/metabolismo , Homeostasis , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/metabolismo , Triglicéridos/metabolismo , Mamíferos/metabolismoRESUMEN
There is an increasing interest in developing natural herb-infused functional beverages with health benefits; therefore, in this study, we aimed to evaluate the effect of strawberry, blueberry, and strawberry-blueberry blend decoction-based functional beverages on obesity-related metabolic alterations in high-fat and high-fructose diet-fed rats. The administration of the three berry-based beverages for eighteen weeks prevented the development of hypertriglyceridemia in obese rats (1.29-1.78-fold) and hepatic triglyceride accumulation (1.38-1.61-fold), preventing the development of hepatic steatosis. Furthermore, all beverages significantly down-regulated Fasn hepatic expression, whereas the strawberry beverage showed the greatest down-regulation of Acaca, involved in fatty acid de novo synthesis. Moreover, the strawberry beverage showed the most significant up-regulation of hepatic Cpt1 and Acadm (fatty acid ß-oxidation). In contrast, the blueberry beverage showed the most significant down-regulation of hepatic Fatp5 and Cd36 (fatty acid intracellular transport). Nevertheless, no beneficial effect was observed on biometric measurements, adipose tissue composition, and insulin resistance. On the other hand, several urolithins and their derivatives, and other urinary polyphenol metabolites were identified after the strawberry-based beverages supplementation. In contrast, enterolactone was found significantly increase after the intake of blueberry-based beverages. These results demonstrate that functional beverages elaborated with berry fruits prevent diet-induced hypertriglyceridemia and hepatic steatosis by modulating critical genes involved in fatty acid hepatic metabolism.