Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 977
Filtrar
1.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700995

RESUMEN

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Asunto(s)
Drosophila melanogaster , Síndrome de Lesch-Nyhan , Animales , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Purinas/metabolismo , Modelos Animales de Enfermedad , Conducta Animal , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/deficiencia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Locomoción
2.
Yi Chuan ; 46(5): 408-420, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763775

RESUMEN

Lesch-Nyhan syndrome (LNS) is a congenital defect disease that results in defective purine metabolism. It is caused by pathogenic variants of the HPRT gene. Its clinical symptoms mainly include high uric acid levels, gout, and kidney stones and damage. The mechanism of LNS has not been fully elucidated, and no cure exists. Animal models have always played an important role in exploring causative mechanisms and new therapies. This study combined CRISPR/Cas9 and microinjection to knock out the HPRT gene to create an LNS rabbit model. A sgRNA targeting exon 3 of HPRT gene was designed. Subsequently, Cas9 mRNA and sgRNA were injected into rabbit zygotes, and injected embryos were transferred to the uterus. The genotype and phenotype of rabbits were analyzed after birth. Four infant rabbits (named R1, R2, R3 and R4), which showed varying levels of gene modification, were born. The gene-editing efficiency was 100%. No wild-type sequences at the target HPRT gene were detected in R4 rabbit. Next, 6-thioguanine drug testing confirmed that HPRT enzymatic activity was deficient in R4 infant rabbit. HE staining revealed kidney abnormalities in all infant rabbits. Overall, an sgRNA capable of knocking out the HPRT gene in rabbits was successfully designed, and HPRT gene-modified rabbits were successfully constructed by using CRISPR/Cas9 technology and microinjection. This study provides a new nonrodent animal model for studying LNS syndrome.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Hipoxantina Fosforribosiltransferasa , Síndrome de Lesch-Nyhan , Animales , Conejos , Síndrome de Lesch-Nyhan/genética , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Femenino , Edición Génica , ARN Guía de Sistemas CRISPR-Cas/genética , Masculino , Fenotipo
3.
Mol Med ; 30(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172668

RESUMEN

BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.


Asunto(s)
Síndrome de Lesch-Nyhan , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Ácido Fólico
4.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38087779

RESUMEN

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Asunto(s)
VIH-1 , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , VIH-1/fisiología , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacología , ARN Interferente Pequeño/genética
5.
Mol Cancer Res ; 22(1): 82-93, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37773022

RESUMEN

Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS: SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Purinas/metabolismo , Nucleótidos de Purina/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Neoplasias Pulmonares/genética
6.
Nat Commun ; 14(1): 4175, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443362

RESUMEN

Proteins play important roles in biology, biotechnology and pharmacology, and missense variants are a common cause of disease. Discovering functionally important sites in proteins is a central but difficult problem because of the lack of large, systematic data sets. Sequence conservation can highlight residues that are functionally important but is often convoluted with a signal for preserving structural stability. We here present a machine learning method to predict functional sites by combining statistical models for protein sequences with biophysical models of stability. We train the model using multiplexed experimental data on variant effects and validate it broadly. We show how the model can be used to discover active sites, as well as regulatory and binding sites. We illustrate the utility of the model by prospective prediction and subsequent experimental validation on the functional consequences of missense variants in HPRT1 which may cause Lesch-Nyhan syndrome, and pinpoint the molecular mechanisms by which they cause disease.


Asunto(s)
Hipoxantina Fosforribosiltransferasa , Síndrome de Lesch-Nyhan , Humanos , Estudios Prospectivos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Proteínas/genética , Mutación Missense
7.
ChemMedChem ; 18(15): e202300211, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264975

RESUMEN

Twelve N2'-branched acyclic nucleoside phosphonates and bisphosphonates were synthesized as potential inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), the key enzyme in the purine salvage pathway for production of purine nucleotides. The chemical structures were designed with the aim to study selectivity of the inhibitors for PfHGXPRT over human HGPRT. The newly prepared compounds contain 9-deazahypoxanthine connected to a phosphonate group via a five-atom-linker bearing a nitrogen atom (N2') as a branching point. All compounds, with the additional phosphonate group(s) in the second aliphatic linker attached to N2' atom, were low micromolar inhibitors of PfHGXPRT with low to modest selectivity for the parasite enzyme over human HGPRT. The effect of the addition of different chemical groups/linkers to N2' atom on the inhibition constants and selectivity is discussed.


Asunto(s)
Antimaláricos , Organofosfonatos , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/farmacología , Nucleósidos/farmacología , Nucleósidos/química , Plasmodium falciparum , Organofosfonatos/farmacología , Organofosfonatos/química , Antimaláricos/farmacología , Antimaláricos/química , Pentosiltransferasa , Hipoxantinas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
8.
Stem Cell Res ; 71: 103144, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331109

RESUMEN

Lesch-Nyhan disease (LND) is a X-linked genetic disease affecting boys characterized by complex neurological and neuropsychiatric symptoms. LND is caused by loss of function mutations in the HPRT1 gene leading to decrease activity of hypoxanthine-guanine phosphoribosyl transferase enzyme (HGPRT) and altered purine salvage pathway (Lesch and Nyhan, 1964). This study describes the generation of isogenic clones with deletions in HPRT1 produced from one male human embryonic stem cell line using CRISPR/Cas9 strategy. Differentiation of these cells into different neuronal subtypes will help elucidating the neurodevelopmental events leading to LND and develop therapeutic strategies for this devastating neurodevelopmental disorder.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de Lesch-Nyhan , Humanos , Masculino , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Células Madre Embrionarias Humanas/metabolismo
9.
Org Biomol Chem ; 21(12): 2556-2561, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36880328

RESUMEN

Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.


Asunto(s)
Hipoxantina Fosforribosiltransferasa , Oryza , Hipoxantina Fosforribosiltransferasa/metabolismo , Vías Biosintéticas , Plantas/metabolismo
10.
Mol Neurobiol ; 60(6): 3147-3157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36802322

RESUMEN

Alterations in function of hypoxanthine guanine phosphoribosyl transferase (HPRT), one of the major enzymes involved in purine nucleotide exchange, lead to overproduction of uric acid and produce various symptoms of Lesch-Nyhan syndrome (LNS). One of the hallmarks of LNS is maximal expression of HPRT in the central nervous system with the highest activity of this enzyme in the midbrain and basal ganglia. However, the nature of neurological symptoms has yet to be clarified in details. Here, we studied whether HPRT1 deficiency changes mitochondrial energy metabolism and redox balance in murine neurons from the cortex and midbrain. We found that HPRT1 deficiency inhibits complex I-dependent mitochondrial respiration resulting in increased levels of mitochondrial NADH, reduction of the mitochondrial membrane potential, and increased rate of reactive oxygen species (ROS) production in mitochondria and cytosol. However, increased ROS production did not induce oxidative stress and did not decrease the level of endogenous antioxidant glutathione (GSH). Thus, disruption of mitochondrial energy metabolism but not oxidative stress could play a role of potential trigger of brain pathology in LNS.


Asunto(s)
Síndrome de Lesch-Nyhan , Ratones , Animales , Síndrome de Lesch-Nyhan/metabolismo , Síndrome de Lesch-Nyhan/patología , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Especies Reactivas de Oxígeno , Encéfalo/metabolismo , Metabolismo Energético
11.
Arch Biochem Biophys ; 737: 109550, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796662

RESUMEN

Approaches to identify novel druggable targets for treating neglected diseases include computational studies that predict possible interactions of drugs and their molecular targets. Hypoxanthine phosphoribosyltransferase (HPRT) plays a central role in the purine salvage pathway. This enzyme is essential for the survival of the protozoan parasite T. cruzi, the causal agent of Chagas disease, and other parasites related to neglected diseases. Here we found dissimilar functional behaviours between TcHPRT and the human homologue, HsHPRT, in the presence of substrate analogues that can lie in differences in their oligomeric assemblies and structural features. To shed light on this issue, we carried out a comparative structural analysis between both enzymes. Our results show that HsHPRT is considerably more resistant to controlled proteolysis than TcHPRT. Moreover, we observed a variation in the length of two key loops depending on the structural arrangement of each protein (groups D1T1 and D1T1'). Such variations might be involved in inter-subunit communication or influencing the oligomeric state. Besides, to understand the molecular basis that govern D1T1 and D1T1' folding groups, we explored the distribution of charges on the interaction surfaces of TcHPRT and HsHPRT, respectively. To know whether the rigidity degree bears effect on the active site, we studied the flexibility of both proteins. The analysis performed here illuminates the underlying reasons and significance behind each protein's preference for one or the other quaternary arrangement that can be exploited for therapeutic approaches.


Asunto(s)
Antiinfecciosos , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/farmacología , Antiparasitarios/farmacología , Enfermedades Desatendidas , Antiinfecciosos/farmacología
12.
J Nat Prod ; 86(4): 710-718, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802627

RESUMEN

2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.


Asunto(s)
Agaricales , Hipoxantina Fosforribosiltransferasa , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Cromatografía Liquida , Transcriptoma , Espectrometría de Masas en Tándem , Agaricales/metabolismo , Hipoxantinas/metabolismo , Ribonucleótidos/metabolismo
13.
Zygote ; 31(2): 129-139, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36622104

RESUMEN

Adult male and female Murrah buffalo fibroblast cells were used as donors for the production of embryos using handmade cloning. Both donor cells and reconstructed embryos were treated with 50 nM trichostatin-A (TSA) and 7.5 nM 5-aza-2'-deoxycytidine (5-aza-dC). The blastocyst rate of both treated male (40.1% ± 2.05) and female (37.0% ± 0.83) embryos was significantly lower than in untreated control males (49.7% ± 3.80) and females (47.2% ± 2.44) but their apoptotic index was lower (male, control: 5.90 ± 0.48; treated: 4.96 ± 0.31): (female, control: 8.11 ± 0.67; treated: 6.65 ± 0.43) and epigenetic status in terms of global acetylation and methylation of histone was significantly improved. The expression level of hypoxanthine-guanine phosphoribosyltransferase (HPRT) was higher (P < 0.05) and that of PGK, G6PD, OCT 4, IFN-tau and CASPASE3 was significantly lower (P < 0.05) in treated male blastocyst than control and the expression levels of DNMT1, IGF1R and BCL-XL were not significantly different between the two groups. In the female embryos, the relative mRNA abundance of OCT4 was significantly higher (P < 0.05), and that of XIST and CASPASE3 was significantly lower (P < 0.05) in the epigenetic modifier-treated group compared with that of the control group, whereas the expression levels of HPRT, PGK, G6PD, DNMT1, IFN-tau, IGF1R and BCL-XL were not significantly different between the two groups. In both embryos, a similar effect of treatment was observed on genes related to growth and development, but the effect on the expression of X-linked genes varied. These results indicate that not all X-linked genes respond to TSA and 5-aza-dC treatment in the same manner.


Asunto(s)
Búfalos , Epigénesis Genética , Animales , Femenino , Masculino , Búfalos/genética , Búfalos/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/farmacología , Blastocisto/metabolismo , Clonación de Organismos/métodos , Azacitidina/farmacología , Desarrollo Embrionario/genética , Técnicas de Transferencia Nuclear
14.
Chemosphere ; 311(Pt 2): 136970, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36283430

RESUMEN

Some heavy metals in the environment may have estrogen-like activity, which probably lead to major diseases such as breast cancer. It is of great importance to establish new methods to evaluate the estrogen effect of heavy metals from multiple angles due to the complex mechanism of estrogen effect. In this paper, using MCF-7 cells as model, the electrochemical detection mechanism of the estrogen effect of heavy metal cadmium (Cd) was studied. The two electrochemical signals of MCF-7 cells derived from uric acid (0.30 V) and the mixture of guanine and xanthine (0.68 V) increased in a time and dose-dependent manner when MCF-7 cells induced by Cd, reaching the maximum at 96 h and 10-9 mol L-1. Further studies found that three purine metabolism pathways about de novo synthesis, salvage synthesis and decomposition metabolism were activated by the estrogen effect of Cd. The expression of PRPP amidotransferase in purine de novo synthesis pathway and HPRT in purine salvage synthesis pathway up-regulated, especially HPRT, which promoted cell proliferation together. Nevertheless, the expression of GDA and ADA, the key enzymes in purine decomposition metabolism pathway, up-regulated in a time and dose-dependent manner, which had same tendency with that of ERα, thereby increased the content of intracellular hypoxanthine, guanine, xanthine and uric acid, and enhanced electrochemical signals.


Asunto(s)
Cadmio , Hipoxantina Fosforribosiltransferasa , Humanos , Cadmio/toxicidad , Hipoxantina Fosforribosiltransferasa/metabolismo , Ácido Úrico , Purinas , Guanina/metabolismo , Estrógenos , Xantinas
15.
NMR Biomed ; 36(5): e4888, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36468685

RESUMEN

Favipiravir (brand name Avigan), a widely known anti-influenza prodrug, is metabolized by endogenous enzymes of host cells to generate the active form, which exerts inhibition of viral RNA-dependent RNA polymerase activity; first, favipiravir is converted to its phosphoribosylated form, favipiravir-ribofuranosyl-5'-monophosphate (favipiravir-RMP), by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Because this phosphoribosylation reaction is the rate-determining step in the generation of the active metabolite, quantitative and real-time monitoring of the HGPRT-catalyzed reaction is essential to understanding the pharmacokinetics of favipiravir. However, assay methods enabling such monitoring have not been established. 19 F- or 31 P-based nuclear magnetic resonance (NMR) are powerful techniques for observation of intermolecular interactions, chemical reactions, and metabolism of molecules of interest, given that NMR signals of the heteronuclei sensitively reflect changes in the chemical environment of these moieties. Here, we demonstrated direct, sensitive, target-selective, nondestructive, and real-time observation of HGPRT-catalyzed conversion of favipiravir to favipiravir-RMP by performing time-lapse 19 F-NMR monitoring of the fluorine atom of favipiravir. In addition, we showed that 31 P-NMR can be used for real-time observation of the identical reaction by monitoring phosphorus atoms of the phosphoribosyl group of favipiravir-RMP and of the pyrophosphate product of that reaction. Furthermore, we demonstrated that NMR approaches permit the determination of general parameters of enzymatic activity such as Vmax and Km . This method not only can be widely employed in enzyme assays, but also may be of use in the screening and development of new favipiravir-analog antiviral prodrugs that can be phosphoribosylated more efficiently by HGPRT, which would increase the intracellular concentration of the drug's active form. The techniques demonstrated in this study would allow more detailed investigation of the pharmacokinetics of fluorinated drugs, and might significantly contribute to opening new avenues for widespread pharmaceutical studies.


Asunto(s)
Profármacos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Imagen de Lapso de Tiempo , Amidas , Espectroscopía de Resonancia Magnética , Catálisis
16.
J Neurogenet ; 36(2-3): 81-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226509

RESUMEN

Lesch-Nyhan disease (LND) is a neurodevelopmental disorder caused by variants in the HPRT1 gene, which encodes the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGprt). HGprt deficiency provokes numerous metabolic changes which vary among different cell types, making it unclear which changes are most relevant for abnormal neural development. To begin to elucidate the consequences of HGprt deficiency for developing human neurons, neural stem cells (NSCs) were prepared from 6 induced pluripotent stem cell (iPSC) lines from individuals with LND and compared to 6 normal healthy controls. For all 12 lines, gene expression profiles were determined by RNA-seq and protein expression profiles were determined by shotgun proteomics. The LND lines revealed significant changes in expression of multiple genes and proteins. There was little overlap in findings between iPSCs and NSCs, confirming the impact of HGprt deficiency depends on cell type. For NSCs, gene expression studies pointed towards abnormalities in WNT signaling, which is known to play a role in neural development. Protein expression studies pointed to abnormalities in the mitochondrial F0F1 ATPase, which plays a role in maintaining cellular energy. These studies point to some mechanisms that may be responsible for abnormal neural development in LND.


Asunto(s)
Síndrome de Lesch-Nyhan , Células-Madre Neurales , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Guanina/metabolismo , Adenosina Trifosfatasas , Hipoxantinas
17.
Biochemistry ; 61(19): 2088-2105, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193631

RESUMEN

Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people worldwide. Current antiparasitic treatments for Chagas disease are ineffective in treating advanced, chronic stages of the disease, and are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines from the host. Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are enzymes that are critical for the salvage of preformed purines, catalyzing the formation of inosine monophosphate (IMP) and guanosine monophosphate (GMP) from the nucleobases hypoxanthine and guanine, respectively. Due to the central role of HGPRTs in purine salvage, these enzymes are promising targets for the development of new treatment methods for Chagas disease. In this study, we characterized two gene products in the T. cruzi CL Brener strain that encodes enzymes with functionally identical HGPRT activities in vitro: TcA (TcCLB.509693.70) and TcC (TcCLB.506457.30). The TcC isozyme was kinetically characterized to reveal mechanistic details on catalysis, including identification of the rate-limiting step(s) of catalysis. Furthermore, we identified and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors (TSAIs) of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), where the most potent compound bound to T. cruzi HGPRT with low nanomolar affinity. Our results validated the repurposing of TSAIs to serve as selective inhibitors for orthologous molecular targets, where primary and secondary structures as well as putatively common chemical mechanisms are conserved.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Antiparasitarios , Guanina/metabolismo , Guanosina Monofosfato , Humanos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Inosina Monofosfato , Isoenzimas , Purinas/metabolismo , Purinas/farmacología
18.
PLoS Pathog ; 18(9): e1010832, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121863

RESUMEN

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals.


Asunto(s)
COVID-19 , Proteínas de Unión al GTP Monoméricas , Profármacos , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacología , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tioguanina , Virión/metabolismo
19.
Clin Chem ; 68(10): 1323-1335, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36093578

RESUMEN

BACKGROUND: Gene expression in circulating tumor cells (CTCs) can be used as a predictive liquid biopsy test in metastatic castration-resistant prostate cancer (mCRPC). We developed a novel 6-plex reverse transcription droplet digital PCR (RT-ddPCR) assay for the absolute quantification of 4 prostate cancer biomarkers, a reference gene, and a synthetic DNA external control (DNA-EC) in CTCs isolated from mCRPC patients. METHODS: A novel 6-plex RT-ddPCR assay was developed for the simultaneous absolute quantification of AR-FL, AR-V7, PSA, and PSMA, HPRT (used as a reference gene), and a synthetic DNA-EC that was included for quality control. The assay was optimized and analytically validated using DNA synthetic standards for each transcript as positive controls. Epithelial cellular adhesion molecule (EpCAM)-positive CTC fractions isolated from 90 mCRPC patients and 11 healthy male donors were analyzed, and results were directly compared with reverse transcription quantitative PCR (RT-qPCR) for all markers in all samples. RESULTS: Linear dynamic range, limit of detection, limit of quantification, intra- and interassay precision, and analytical specificity were determined for each marker. Application of the assay in EpCAM-positive CTC showed positivity for AR-FL (71/90; 78.9%), AR-V7 (28/90; 31.1%), PSA (41/90; 45.6%), PSMA (38/90; 42.2%), and HPRT (90/90; 100%); DNA-EC concentration was constant across all samples. Direct comparison with RT-qPCR for the same markers in the same samples revealed RT-ddPCR to have superior diagnostic sensitivity. CONCLUSIONS: Our 6-plex RT-ddPCR assay was highly sensitive, specific, and reproducible, and enabled simultaneous and absolute quantification of 5 gene transcripts in minute amounts of CTC-derived cDNA. Application of this assay in clinical samples gave diagnostic sensitivity and specificity comparable to, or better than, RT-qPCR.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ADN Complementario , Molécula de Adhesión Celular Epitelial/genética , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Masculino , Células Neoplásicas Circulantes/patología , Reacción en Cadena de la Polimerasa , Próstata/metabolismo , Próstata/patología , Antígeno Prostático Específico/genética , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas , Receptores Androgénicos/genética , Transcripción Reversa
20.
Cell Mol Life Sci ; 79(6): 341, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35660973

RESUMEN

In Lesch-Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.


Asunto(s)
Síndrome de Lesch-Nyhan , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Mesencéfalo/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA