Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.537
Filtrar
1.
PLoS One ; 19(5): e0302470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701101

RESUMEN

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Asunto(s)
Cognición , Giro del Cíngulo , Histamina , Inflamación , Lipopolisacáridos , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Inflamación/metabolismo , Ratones , Masculino , Histamina/sangre , Histamina/metabolismo , Ácido Kaínico , Interleucina-6/sangre , Interleucina-6/metabolismo , Conducta Animal , Red Nerviosa/fisiopatología , Ratones Endogámicos C57BL
2.
Int Immunopharmacol ; 133: 112113, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657498

RESUMEN

BACKGROUND: Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS: The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the ß-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS: Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS: Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.


Asunto(s)
Degranulación de la Célula , Histamina , Mastocitos , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G , Canales Catiónicos TRPV , Animales , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Humanos , Canales Catiónicos TRPV/metabolismo , Degranulación de la Célula/efectos de los fármacos , Células HEK293 , Histamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Masculino , Prurito/tratamiento farmacológico , Calcio/metabolismo , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neuropéptido/metabolismo , Ratones Endogámicos C57BL
3.
Biol Pharm Bull ; 47(4): 791-795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583950

RESUMEN

The number of patients with type 2 diabetes is increasing worldwide. The mechanisms leading to type 2 diabetes and its complications is being researched; however, the pathological mechanisms of diabetes in the small intestine remain unclear. Therefore, we examined these pathological mechanisms in the small intestine using a mouse model of type 2 diabetes (KK-Ay/TaJcl) aged 10 and 50 weeks. The results showed that diabetes worsened with age in the mice with type 2 diabetes. In these mice, advanced glycation end products (AGEs) in the small intestine and mast cell expression increased, whereas diamine oxidase (DAO) decreased; increased tumor necrosis factor (TNF)-α and histamine levels in the plasma and small intestine were also detected. Additionally, the expression of zonula occludens (ZO)-1 and Claudin1 and cell adhesion molecules in the small intestine reduced. These results exacerbated with age. These findings indicate that type 2 diabetes causes AGE/mast cell/histamine and TNF-α signal transmission in the small intestine and decreases small intestinal wall cell adhesion molecules cause TNF-α and histamine to flow into the body, worsening the diabetic condition. In addition, this sequence of events is suggested to be strengthened in aged mice with type 2 diabetes, thus exacerbating the disease. These findings of this study may facilitate the elucidation of the pathological mechanisms of type 2 diabetes and its associated complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Histamina/metabolismo , Intestino Delgado/metabolismo , Moléculas de Adhesión Celular , Productos Finales de Glicación Avanzada/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674034

RESUMEN

The present work intends to provide a closer look at histamine in Drosophila. This choice is motivated firstly because Drosophila has proven over the years to be a very simple, but powerful, model organism abundantly assisting scientists in explaining not only normal functions, but also derangements that occur in higher organisms, not excluding humans. Secondly, because histamine has been demonstrated to be a pleiotropic master molecule in pharmacology and immunology, with increasingly recognized roles also in the nervous system. Indeed, it interacts with various neurotransmitters and controls functions such as learning, memory, circadian rhythm, satiety, energy balance, nociception, and motor circuits, not excluding several pathological conditions. In view of this, our review is focused on the knowledge that the use of Drosophila has added to the already vast histaminergic field. In particular, we have described histamine's actions on photoreceptors sustaining the visual system and synchronizing circadian rhythms, but also on temperature preference, courtship behavior, and mechanosensory transmission. In addition, we have highlighted the pathophysiological consequences of mutations on genes involved in histamine metabolism and signaling. By promoting critical discussion and further research, our aim is to emphasize and renew the importance of histaminergic research in biomedicine through the exploitation of Drosophila, hopefully extending the scientific debate to the academic, industry, and general public audiences.


Asunto(s)
Ritmo Circadiano , Drosophila , Histamina , Animales , Ritmo Circadiano/fisiología , Drosophila/metabolismo , Histamina/metabolismo , Transducción de Señal , Modelos Animales
5.
Nutrients ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674909

RESUMEN

Histamine intolerance is a condition characterized by the accumulation of histamine to a point that exceeds the body's capacity to eliminate it. Researchers have attributed several reasons to this condition, such as genetic factors, alcohol, and dietary deficiencies, among other elements. Symptoms of histamine intolerance have been found to extend beyond the gastrointestinal tract and to the whole body, with these symptoms being sporadic and non-specific. This review will explore various aspects related to histamine intolerance, such as its causes, symptoms, diagnosis, and information related to management.


Asunto(s)
Intolerancia Alimentaria , Histamina , Humanos , Histamina/metabolismo , Intolerancia Alimentaria/diagnóstico , Hipersensibilidad a los Alimentos/diagnóstico
6.
J Clin Invest ; 134(10)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502192

RESUMEN

Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.


Asunto(s)
Síndrome de Fuga Capilar , Modelos Animales de Enfermedad , Óxido Nítrico Sintasa de Tipo III , Factor A de Crecimiento Endotelial Vascular , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratones , Síndrome de Fuga Capilar/metabolismo , Síndrome de Fuga Capilar/patología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Histamina/metabolismo , Mediadores de Inflamación/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Masculino
7.
Nat Commun ; 15(1): 2493, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509098

RESUMEN

The histamine H4 receptor (H4R) plays key role in immune cell function and is a highly valued target for treating allergic and inflammatory diseases. However, structural information of H4R remains elusive. Here, we report four cryo-EM structures of H4R/Gi complexes, with either histamine or synthetic agonists clobenpropit, VUF6884 and clozapine bound. Combined with mutagenesis, ligand binding and functional assays, the structural data reveal a distinct ligand binding mode where D943.32 and a π-π network determine the orientation of the positively charged group of ligands, while E1825.46, located at the opposite end of the ligand binding pocket, plays a key role in regulating receptor activity. The structural insight into H4R ligand binding allows us to identify mutants at E1825.46 for which the agonist clobenpropit acts as an inverse agonist and to correctly predict inverse agonism of a closely related analog with nanomolar potency. Together with the findings regarding receptor activation and Gi engagement, we establish a framework for understanding H4R signaling and provide a rational basis for designing novel antihistamines targeting H4R.


Asunto(s)
Agonismo Inverso de Drogas , Histamina , Imidazoles , Tiourea/análogos & derivados , Histamina/metabolismo , Receptores Histamínicos H4 , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Receptores Histamínicos/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología
8.
J Agric Food Chem ; 72(12): 6519-6525, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497614

RESUMEN

Histamine, found abundantly in salt-fermented foods, poses a risk of food poisoning. Natronobeatus ordinarius, a halophilic archaeon isolated from a salt lake, displayed a strong histamine degradation ability. Its histamine oxidase (HOD) gene was identified (hodNbs). This is the first report of an archaeal HOD. The HODNbs protein was determined to be a tetramer with a molecular weight of 307 kDa. HODNbs displayed optimum activity at 60-65 °C, 1.5-2.0 M NaCl, and pH 6.5. Notably, within the broad NaCl range between 0.5 and 2.5 M, HODNbs retained above 50% of its maximum activity. HODNbs exhibited good thermal stability, pH stability, and salinity tolerance. HODNbs was able to degrade various biogenic amines. The Vmax of HODNbs for histamine was 0.29 µmol/min/mg, and the Km was 0.56 mM. HODNbs exhibited high efficiency in histamine removal from fish sauce, namely, 100 µg of HODNbs degraded 5.63 mg of histamine (37.9%) in 10 g of fish sauce within 24 h at 50 °C. This study showed that HODNbs with excellent enzymatic properties has promising application potentials to degrade histamine in high-salt foods.


Asunto(s)
Histamina , Oxidorreductasas , Animales , Histamina/metabolismo , Archaea/metabolismo , Cloruro de Sodio , Aminas Biogénicas/metabolismo , Inocuidad de los Alimentos
9.
Biochem Pharmacol ; 223: 116164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531422

RESUMEN

Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.


Asunto(s)
Histamina , Neoplasias , Humanos , Histamina/metabolismo , Estudios Retrospectivos , Calidad de Vida , Antagonistas de los Receptores H2 de la Histamina , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
10.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542369

RESUMEN

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Asunto(s)
Arrestina , Histamina , Animales , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Proteínas de Unión al GTP/metabolismo , Histamina/farmacología , Histamina/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transducción de Señal
11.
Curr Biol ; 34(7): 1453-1468.e6, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38484733

RESUMEN

Itch encompasses both sensory and emotional dimensions, with the two dimensions reciprocally exacerbating each other. However, whether a shared neural circuit mechanism governs both dimensions remains elusive. Here, we report that the anterior insular cortex (AIC) is activated by both histamine-dependent and -independent itch stimuli. The activation of AIC elicits aversive emotion and exacerbates pruritogen-induced itch sensation and aversion. Mechanistically, AIC excitatory neurons project to the GABAergic neurons in the dorsal bed nucleus of the stria terminalis (dBNST). Manipulating the activity of the AIC → dBNST pathway affects both itch sensation and itch-induced aversion. Our study discovers the shared neural circuit (AIC â†’ dBNST pathway) underlying the itch sensation and aversion, highlights the critical role of the AIC as a central hub for the itch processing, and provides a framework to understand the neural mechanisms underlying the sensation and emotion interaction.


Asunto(s)
Corteza Insular , Sensación , Humanos , Sensación/fisiología , Neuronas GABAérgicas/metabolismo , Histamina/efectos adversos , Histamina/metabolismo , Prurito/inducido químicamente
12.
Sci Rep ; 14(1): 6011, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472288

RESUMEN

Sensory neurons are afferent neurons in sensory systems that convert stimuli and transmit information to the central nervous system as electrical signals. Primary afferent neurons that are affected by non-noxious and noxious stimuli are present in the dorsal root ganglia (DRG), and the DRG sensory neurons are used as an in vitro model of the nociceptive response. However, DRG derived from mouse or rat give a low yield of neurons, and they are difficult to culture. To help alleviate this problem, we characterized human induced pluripotent stem cell (hiPSC) derived sensory neurons. They can solve the problems of interspecies differences and supply stability. We investigated expressions of sensory neuron related proteins and genes, and drug responses by Multi-Electrode Array (MEA) to analyze the properties and functions of sensory neurons. They expressed nociceptor, mechanoreceptor and proprioceptor related genes and proteins. They constitute a heterogeneous population of their subclasses. We confirmed that they could respond to both noxious and non-noxious stimuli. We showed that histamine inhibitors reduced histamine-induced neuronal excitability. Furthermore, incubation with a ProTx-II and Nav1.7 inhibitor reduced the spontaneous neural activity in hiPSC-derived sensory neurons. Their responsiveness was different from each drug. We have demonstrated that hiPSC-derived sensory neurons combined with MEA are good candidates for drug discovery studies where DRG in vitro modeling is necessary.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ratas , Ratones , Animales , Células Madre Pluripotentes Inducidas/fisiología , Histamina/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglios Espinales/metabolismo
13.
Drug Discov Today ; 29(4): 103941, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447930

RESUMEN

Calcitonin gene-related peptide (CGRP) and histamine plasma concentrations increase during migraine attacks. Both mediators are potent vasodilators, and they have been shown to reciprocally contribute to the release of each other in the trigeminovascular system, possibly driving migraine development. A high-histamine-content diet triggers migraine in patients who have histamine degradation deficiency owing to diaminooxidase (DAO) gene mutations. Therefore, studying functional links between exogenous histamine and CGRP seems promising for the understanding of diet-induced migraine generation. Notably, there is a lack of knowledge about the interplay of the enteric nervous system and the spinal/trigeminal somatosensory system with regard to CGRP and histamine. Based on background evidence, we propose that a functional interconnection between exogenous histamine and CGRP contributes to migraine development.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Histamina , Trastornos Migrañosos , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Histamina/metabolismo , Trastornos Migrañosos/metabolismo
14.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38307355

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Asunto(s)
Alpinia , Antiulcerosos , Úlcera Gástrica , Ratones , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Etanol/toxicidad , Quempferoles/farmacología , Quempferoles/uso terapéutico , Rizoma/metabolismo , Úlcera/tratamiento farmacológico , Luteolina/farmacología , Histamina/metabolismo , Mucosa Gástrica , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo
15.
Nat Commun ; 15(1): 1831, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418462

RESUMEN

Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.


Asunto(s)
Escherichia coli , Histamina , Humanos , Histamina/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Escherichia coli/metabolismo , Receptores Histamínicos H2/metabolismo
16.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350720

RESUMEN

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Asunto(s)
Canales de Potasio , Prurito , Animales , Ratones , Antipruriginosos/uso terapéutico , Histamina/metabolismo , Loxapina/uso terapéutico , Canales de Potasio/metabolismo , Prurito/tratamiento farmacológico , Prurito/metabolismo
17.
J Biochem Mol Toxicol ; 38(2): e23653, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348711

RESUMEN

Histamine (HIS) is an important chemical mediator that causes vasodilation and contributes to anaphylactic reactions. Recently, HIS is an understudied neurotransmitter in the central nervous system, and its potential role in neuroinflammation and neurodegeneration is a critical area of research. So, the study's goal is to investigate the consequences of repeated oral intake of HIS on the rat's brain and explore the mechanistic way of its neurotoxicity. Thirty male rats were divided into three groups (n = 10). The following treatments were administered orally to all rats every day for 14 days. Group (1) was given distilled water, whereas groups (2 & 3) were given HIS at dosage levels 250 and 500 mg/kg body weight (BWT), respectively. Brain tissue samples were collected at 7- and 14-days from the beginning of the experiment. Our results revealed that continuous oral administration of HIS at both doses for 14 days significantly reduced the BWT and induced severe neurobehavioral changes, including depression, dullness, lethargy, tremors, abnormal walking, and loss of spatial learning and memory in rats. In all HIS receiving groups, HPLC data showed a considerable raise in the HIS contents of the brain. Additionally, the daily consumption of HIS causes oxidative stress that is dose- and time-dependent which is characterized by elevation of malondialdehyde levels along with reduction of catalase activity and reduced glutathione levels. The neuropathological lesions were commonly observed in the cerebrum, striatum, and cerebellum and confirmed by the immunohistochemistry staining that demonstrating moderate to strong caspase-3 and inducible nitric oxide synthase expressions in all HIS receiving groups, mainly those receiving 500 mg/kg HIS. NF-κB, TNF-α, and IL-1ß gene levels were also upregulated at 7- and 14-days in all HIS groups, particularly in those getting 500 mg/kg. We concluded that ROS-induced apoptosis and inflammation was the essential mechanism involved in HIS-mediated neurobehavioral toxicity and histopathology.


Asunto(s)
Histamina , Enfermedades del Sistema Nervioso , Ratas , Masculino , Animales , Histamina/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Apoptosis
18.
Biopharm Drug Dispos ; 45(1): 43-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38305087

RESUMEN

The renal tubular organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the vectorial elimination of many drugs and toxins from the kidney, and endogenous biomarkers for vectorial transport (OCT2-MATE1) would allow more accurate drug dosing and help to characterize drug-drug interactions and toxicity. Human serum uptake in OCT2-overexpressing cells and metabolomics analysis were carried out. Potential biomarkers were verified in vitro and in vivo. The specificity of biomarkers was validated in renal transporter overexpressing cells and the sensitivity was investigated by Km . The results showed that the uptake of thiamine, histamine, and 5-hydroxytryptamine was significantly increased in OCT2-overexpressing cells. In vitro assays confirmed that thiamine, histamine, and 5-hydroxytryptamine were substrates of both OCT2 and MATE1. In vivo measurements indicated that the serum thiamine level was increased significantly in the presence of the rOCT2 inhibitor cimetidine, and the level in renal tissue was increased significantly by the rMATE1 inhibitor pyrimethamine. There were no significant changes in the uptake or efflux of thiamine in cell lines overexpressed OAT1, OAT2, OAT3, MRP4, organic anion transporting polypeptide 4C1, P-gp, peptide transporter 2, urate transporter 1, and OAT4. The Km for thiamine with OCT2 and MATE1 were 71.2 and 10.8 µM, respectively. In addition, the cumulative excretion of thiamine at 2 and 4 h was strongly correlated with metformin excretion (R2  > 0.6). Thus, thiamine is preferentially secreted by the OCT2 and MATE1 in renal tubules and can provide a reference value for evaluating the function of the renal tubular OCT2-MATE1.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Transportador 1 de Catión Orgánico , Humanos , Transportador 1 de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Histamina/metabolismo , Serotonina/metabolismo , Riñón/metabolismo , Tiamina/metabolismo , Células HEK293
19.
Food Chem ; 443: 138399, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280364

RESUMEN

This study aimed to efficiently reduce a large number of biogenic amines in salt-fermented fish sauce while minimizing sensory reduction using various activated carbons. Aromatic amines, such as tryptamine and phenethylamine, were reduced by 86.1-100 % after treating with activated carbon. Histamine with a heterocyclic structure decreased by 13-42 %. No significant effects were observed on the levels of aliphatic amines, putrescine, cadaverine, spermine, and spermidine. The major taste component, amino acid nitrogen, was reduced to within 3 %, and brown color removal was reduced depending on the type of activated carbon used. Acid-modified AC-A and AC-B had rough surfaces, high total acidity, low point of zero charge (pHpzc), and rich surface functional groups. Owing to its smooth surface, low total acidity, high pHpzc, and few surface functional groups, AC-C exhibited a higher histamine elimination and less color reduction despite its lower surface area compared to other activated carbons.


Asunto(s)
Carbón Orgánico , Histamina , Animales , Histamina/metabolismo , Aminas Biogénicas/metabolismo , Putrescina , Espermidina
20.
Nihon Yakurigaku Zasshi ; 159(1): 44-47, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38171838

RESUMEN

Mast cells and basophils share many characteristics, such as surface expression of the high affinity receptor of IgE, FcεRI, granule storage of histamine, which is released during their activation, and potentials to produce pro-/anti-inflammatory cytokines. These similar leukocytes, however, were found to have their own process of differentiation. Indeed, accumulating evidence suggests that these cells should play critical roles in type I allergy including anaphylaxis and in urticaria. Various inflammatory mediators derived from mast cells/basophils, such as histamine, platelet-activating factor, prostanoids, and leukotrienes, have been paid a particular attention to as the therapeutic targets for type I allergy and inflammatory diseases. Recent progress in the field of mast cell/basophil research has shed light on their physiological roles in bacterial infection, energy metabolism, and cutaneous/intestinal inflammation. This review makes a brief introduction of these recent studies, which are expected to provide novel therapeutic approaches for infectious and chronic inflammatory diseases.


Asunto(s)
Basófilos , Urticaria , Humanos , Basófilos/metabolismo , Mastocitos/metabolismo , Histamina/metabolismo , Urticaria/metabolismo , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA