Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063217

RESUMEN

Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.


Asunto(s)
Histidina , Humanos , Fosforilación , Histidina/metabolismo , Histidina/análogos & derivados , Animales , Monoéster Fosfórico Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Histidina Quinasa/metabolismo , Histidina Quinasa/genética
2.
Biochem Biophys Res Commun ; 729: 150361, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972141

RESUMEN

Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.


Asunto(s)
Conducta Animal , Depresión , Dipéptidos , Animales , Femenino , Dipéptidos/metabolismo , Ratones , Depresión/metabolismo , Depresión/genética , Encéfalo/metabolismo , Carnosina/análogos & derivados , Carnosina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Hipercinesia/metabolismo , Hipercinesia/genética , Envejecimiento/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Histidina/deficiencia
3.
Nat Commun ; 15(1): 3301, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671004

RESUMEN

Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues. Knockin mice harboring the patient's mutations and Xenopus embryos with Dph1 depleted also display NC defects, which can be attributed to reduced proliferation in the neuroepithelium. DPH1 depletion facilitates dissociation of eEF2 from ribosomes and association with p53 to promote transcription of the cell cycle inhibitor p21, resulting in inhibited proliferation. Knockout of one p21 allele rescues the NC phenotypes in the knockin mice carrying the patient's mutations. These findings uncover an unexpected role for eEF2 as a transcriptional coactivator for p53 to induce p21 expression and NC defects, which is regulated by diphthamide modification.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Histidina , Histidina/análogos & derivados , Antígenos de Histocompatibilidad Menor , Cresta Neural , Factor 2 de Elongación Peptídica , Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Animales , Cresta Neural/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ratones , Factor 2 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/genética , Histidina/metabolismo , Ribosomas/metabolismo , Mutación , Proliferación Celular , Xenopus laevis , Femenino , Técnicas de Sustitución del Gen , Xenopus , Masculino , Ratones Noqueados
4.
Biomolecules ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672486

RESUMEN

The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.


Asunto(s)
Secuencias de Aminoácidos , Cisteína , Histidina/análogos & derivados , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína/genética , Cisteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Multimerización de Proteína , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Mutagénesis Sitio-Dirigida
5.
Adv Healthc Mater ; 13(14): e2303857, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38344923

RESUMEN

Recently, mRNA-based therapeutics, including vaccines, have gained significant attention in the field of gene therapy for treating various diseases. Among the various mRNA delivery vehicles, lipid nanoparticles (LNPs) have emerged as promising vehicles for packaging and delivering mRNA with low immunogenicity. However, while mRNA delivery has several advantages, the delivery efficiency and stability of LNPs remain challenging for mRNA therapy. In this study, an ionizable helper cholesterol analog, 3ß[L-histidinamide-carbamoyl] cholesterol (Hchol) lipid is developed and incorporated into LNPs instead of cholesterol to enhance the LNP potency. The pKa values of the Hchol-LNPs are ≈6.03 and 6.61 in MC3- and SM102-based lipid formulations. Notably, the Hchol-LNPs significantly improve the delivery efficiency by enhancing the endosomal escape of mRNA. Additionally, the Hchol-LNPs are more effective in a red blood cell hemolysis at pH 5.5, indicating a synergistic effect of the protonated imidazole groups of Hchol and cholesterol on endosomal membrane destabilization. Furthermore, mRNA delivery is substantially enhanced in mice treated with Hchol-LNPs. Importantly, LNP-encapsulated SARS-CoV-2 spike mRNA vaccinations induce potent antigen-specific antibodies against SARS-CoV-2. Overall, incorporating Hchol into LNP formulations enables efficient endosomal escape and stability, leading to an mRNA delivery vehicle with a higher delivery efficiency.


Asunto(s)
Colesterol , Nanopartículas , ARN Mensajero , SARS-CoV-2 , Animales , Colesterol/química , Colesterol/análogos & derivados , Nanopartículas/química , Ratones , ARN Mensajero/genética , Humanos , Histidina/química , Histidina/análogos & derivados , Lípidos/química , COVID-19 , Vacunas contra la COVID-19/química , Endosomas/metabolismo , Femenino , Hemólisis/efectos de los fármacos , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Liposomas
6.
Nat Commun ; 15(1): 1659, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395953

RESUMEN

Selenium is an essential multifunctional trace element in diverse organisms. The only Se-glycosyltransferase identified that catalyzes the incorporation of selenium in selenoneine biosynthesis is SenB from Variovorax paradoxus. Although the biochemical function of SenB has been investigated, its substrate specificity, structure, and catalytic mechanism have not been elucidated. Here, we reveal that SenB exhibits sugar donor promiscuity and can utilize six UDP-sugars to generate selenosugars. We report crystal structures of SenB complexed with different UDP-sugars. The key elements N20/T23/E231 contribute to the sugar donor selectivity of SenB. A proposed catalytic mechanism is tested by structure-guided mutagenesis, revealing that SenB yields selenosugars by forming C-Se glycosidic bonds via spontaneous deprotonation and disrupting Se-P bonds by nucleophilic water attack, which is initiated by the critical residue K158. Furthermore, we functionally and structurally characterize two other Se-glycosyltransferases, CbSenB from Comamonadaceae bacterium and RsSenB from Ramlibacter sp., which also exhibit sugar donor promiscuity.


Asunto(s)
Glicosiltransferasas , Histidina/análogos & derivados , Compuestos de Organoselenio , Selenio , Glicosiltransferasas/metabolismo , Azúcares de Uridina Difosfato , Carbohidratos , Azúcares , Especificidad por Sustrato
7.
Free Radic Res ; 58(1): 43-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165076

RESUMEN

Bis(1-methylimidazol-2-yl) diselenide (MeImSe), a derivative of selenoneine, has been examined for bimolecular rate constants for scavenging of various radiolytically and non-radiolytically generated reactive oxygen species (ROS). Further, its potential to show glutathione peroxidase (GPx)-like activity and to protect in vitro models of DNA and lipid against radiation induced strand breakage and lipid peroxidation, respectively were studied. The results confirmed that MeImSe scavenged all major short-lived (hydroxyl radical) and long-lived (peroxyl radical, carbonate radical, nitrogen dioxide radical, hypochlorite and hydrogen peroxide) oxidants involved in the radiation toxicity either directly or through GPx-like catalytic mechanism. The rate constants of MeImSe for these oxidants were found to be comparable to analogous sulfur and selenium-based compounds. The enzyme kinetics study established that MeImSe took part in the GPx cycle through the reductive pathway. Further, MeImSe inhibited the radiation induced DNA strand cleavage and lipid peroxidation with half maximal inhibitory concentration (IC50) of ∼ 60 µM and ∼100 µM, respectively. Interestingly, MeImSe treatment in the above concentration range (>100 µM) did not show any significant toxicity in normal human lung fibroblast (WI26) cells. The balance between efficacy and toxicity of MeImSe as a chemical radioprotector was attributed to the formation of less reactive intermediates during its oxidation/reduction reactions as evidenced from NMR studies.HighlightsMeImSe, a derivative of selenoneine protects DNA and lipid from radiation damageMeImSe scavenges all major short- and long-lived oxidants involved in radiation toxicityRate constants of MeImSe for ROS scavenging determined by pulse radiolysis techniqueFirst organoselenium compound reported to scavenge nitrogen dioxide radicalMeImSe exhibits GPx-like activity through reductive pathway.


Asunto(s)
Antioxidantes , Histidina/análogos & derivados , Compuestos de Organoselenio , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión Peroxidasa/metabolismo , Dióxido de Nitrógeno , Compuestos de Organoselenio/química , Peroxidación de Lípido , ADN/metabolismo , Oxidantes , Lípidos , Oxidación-Reducción
8.
Protein Cell ; 15(3): 191-206, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561026

RESUMEN

Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.


Asunto(s)
Ergotioneína , Histidina/análogos & derivados , Compuestos de Organoselenio , Farmacóforo
9.
Cancer Lett ; 582: 216591, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097134

RESUMEN

Oxaliplatin is an important initial chemotherapy benefiting advanced-stage colorectal cancer patients. Frustratingly, acquired oxaliplatin resistance always occurs after sequential chemotherapy with diverse antineoplastic drugs. Therefore, an exploration of the mechanism of oxaliplatin resistance formation in-depth is urgently needed. We generated oxaliplatin-resistant colorectal cancer models by four representative compounds, and RNA-seq revealed that oxaliplatin resistance was mainly the result of cells' response to stimulus. Moreover, we proved persistent stimulus-induced endoplasmic reticulum stress (ERs) and associated cellular senescence were the core causes of oxaliplatin resistance. In addition, we screened diverse phytochemicals for ER inhibitors in silico, identifying inositol hexaphosphate (IP6), whose strong binding was confirmed by surface plasmon resonance. Finally, we confirmed the ability of IP6 to reverse colorectal cancer chemoresistance and investigated the mechanism of IP6 in the inhibition of diphthamide modification of eukaryotic elongation factor 2 (eEF2) and PERK activation. Our study demonstrated that oxaliplatin resistance contributed to cell senescence induced by persistently activated PERK and diphthamide modification of eEF2 levels, which were specifically reversed by combination therapy with IP6.


Asunto(s)
Neoplasias Colorrectales , Histidina/análogos & derivados , Ácido Fítico , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Ácido Fítico/farmacología , Ácido Fítico/uso terapéutico , Factor 2 de Elongación Peptídica/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
10.
Trends Mol Med ; 30(2): 164-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097404

RESUMEN

Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.


Asunto(s)
Relevancia Clínica , Histidina/análogos & derivados , Neoplasias , Humanos , Factor 2 de Elongación Peptídica/metabolismo , Toxina Diftérica/metabolismo
11.
Nature ; 610(7930): 199-204, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071162

RESUMEN

Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.


Asunto(s)
Vías Biosintéticas , Genes Microbianos , Histidina/análogos & derivados , Compuestos de Organoselenio , Selenio , Productos Biológicos/química , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Carbono/metabolismo , Enzimas , Ergotioneína , Genes Microbianos/genética , Histidina/biosíntesis , Metaboloma/genética , Micronutrientes/biosíntesis , Familia de Multigenes/genética , Proteínas , Selenio/metabolismo
12.
PLoS One ; 17(9): e0273797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048825

RESUMEN

There is growing evidence to suggest that phosphohistidines are present at significant levels in mammalian cells and play a part in regulating cellular activity, in particular signaling pathways related to cancer. Because of the chemical instability of phosphohistidine at neutral or acid pH, it remains unclear how much phosphohistidine is present in cells. Here we describe a protocol for extracting proteins from mammalian cells in a way that avoids loss of covalent phosphates from proteins, and use it to measure phosphohistidine concentrations in human bronchial epithelial cell (16HBE14o-) lysate using 31P NMR spectroscopic analysis. Phosphohistidine is determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 15 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 µmol/g and 68 µmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. Phosphorylation is largely at the N3 (tele) position. Typical tryptic digest conditions result in loss of most of the phosphohistidine present, which may explain why the amounts reported here are greater than is generally seen using mass spectroscopy assays. The results further strengthen the case for a functional role of phosphohistidine in eukaryotic cells.


Asunto(s)
Histidina , Proteínas , Animales , Línea Celular , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Mamíferos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteínas/metabolismo
13.
Nat Commun ; 13(1): 4009, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817801

RESUMEN

Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Mamíferos/metabolismo , Ratones , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Pathol ; 258(2): 149-163, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781884

RESUMEN

Diphthamide biosynthesis protein 1 (DPH1) is biochemically involved in the first step of diphthamide biosynthesis, a post-translational modification of eukaryotic elongation factor 2 (EEF2). Earlier studies showed that DPH1, also known as ovarian cancer-associated gene 1 (OVCA1), is involved in ovarian carcinogenesis. However, the role of DPH1 in hepatocellular carcinoma (HCC) remains unclear. To investigate the impact of DPH1 in hepatocellular carcinogenesis, we performed data mining from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. We found that reduced DPH1 levels were associated with advanced stages and poor survival of patients with HCC. Also, we generated hepatocyte-specific Dph1-deficient mice and showed that diphthamide-deficient EEF2 resulted in a reduced translation elongation rate in the hepatocytes and led to mild liver damage with fatty accumulation. After N-diethylnitrosamine (DEN)-induced acute liver injury, p53-mediated pericentral hepatocyte death was increased, and compensatory proliferation was reduced in Dph1-deficient mice. Consistent with these effects, Dph1 deficiency decreased the incidence of DEN-induced pericentral-derived HCC and revealed a protective effect against p53 loss. In contrast, Dph1 deficiency combined with Trp53- or Trp53/Pten-deficient hepatocytes led to increased tumor loads associated with KRT19 (K19)-positive periportal-like cell expansion in mice. Further gene set enrichment analysis also revealed that HCC patients with lower levels of DPH1 and TP53 expression had enriched gene-sets related to the cell cycle and K19-upregulated HCC. Additionally, liver tumor organoids obtained from 6-month-old Pten/Trp53/Dph1-triple-mutant mice had a higher frequency of organoid re-initiation cells and higher proliferative index compared with those of the Pten/Trp53-double-mutant. Pten/Trp53/Dph1-triple-mutant liver tumor organoids showed expression of genes associated with stem/progenitor phenotypes, including Krt19 and Prominin-1 (Cd133) progenitor markers, combined with low hepatocyte-expressed fibrinogen genes. These findings indicate that diphthamide deficiency differentially regulates hepatocellular carcinogenesis, which inhibits pericentral hepatocyte-derived tumors and promotes periportal progenitor-associated liver tumors. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Histidina/análogos & derivados , Neoplasias Hepáticas/genética , Ratones , Proteína p53 Supresora de Tumor/genética
15.
Mol Cell ; 82(12): 2190-2200, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35654043

RESUMEN

Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.


Asunto(s)
Histidina , Proteínas , Histidina/análogos & derivados , Histidina/química , Histidina/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Proteínas/metabolismo
16.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566030

RESUMEN

The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.


Asunto(s)
Alcaloides , Ergotioneína , Histidina/análogos & derivados , Humanos , Metilhistidinas , Compuestos de Organoselenio
17.
Genet Med ; 24(7): 1567-1582, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35482014

RESUMEN

PURPOSE: Diphthamide is a post-translationally modified histidine essential for messenger RNA translation and ribosomal protein synthesis. We present evidence for DPH5 as a novel cause of embryonic lethality and profound neurodevelopmental delays (NDDs). METHODS: Molecular testing was performed using exome or genome sequencing. A targeted Dph5 knockin mouse (C57BL/6Ncrl-Dph5em1Mbp/Mmucd) was created for a DPH5 p.His260Arg homozygous variant identified in 1 family. Adenosine diphosphate-ribosylation assays in DPH5-knockout human and yeast cells and in silico modeling were performed for the identified DPH5 potential pathogenic variants. RESULTS: DPH5 variants p.His260Arg (homozygous), p.Asn110Ser and p.Arg207Ter (heterozygous), and p.Asn174LysfsTer10 (homozygous) were identified in 3 unrelated families with distinct overlapping craniofacial features, profound NDDs, multisystem abnormalities, and miscarriages. Dph5 p.His260Arg homozygous knockin was embryonically lethal with only 1 subviable mouse exhibiting impaired growth, craniofacial dysmorphology, and multisystem dysfunction recapitulating the human phenotype. Adenosine diphosphate-ribosylation assays showed absent to decreased function in DPH5-knockout human and yeast cells. In silico modeling of the variants showed altered DPH5 structure and disruption of its interaction with eEF2. CONCLUSION: We provide strong clinical, biochemical, and functional evidence for DPH5 as a novel cause of embryonic lethality or profound NDDs with multisystem involvement and expand diphthamide-deficiency syndromes and ribosomopathies.


Asunto(s)
Metiltransferasas , Trastornos del Neurodesarrollo , Adenosina Difosfato/metabolismo , Animales , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
18.
BMJ Case Rep ; 15(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393273

RESUMEN

Menkes disease (MD) is an X linked recessive multi-systemic disorder of copper metabolism, resulting from an ATP7A gene mutation. We report a male infant aged 4 months who presented with kinky hair, hypopigmented skin, epilepsy and delayed development. Magnetic resonance imaging (MRI) of brain demonstrated multiple tortuosities of intracranial vessels and brain atrophy. Investigation had showed markedly decreased serum copper and ceruloplasmin. The novel c.2172+1G>T splice-site mutation in the ATP7A gene confirmed MD. He was treated with subcutaneous administration of locally prepared copper-histidine (Cu-His). Following the therapy, hair manifestation was restored and serum ceruloplasmin was normalised 1 month later. Despite the treatment, epilepsy, neurodevelopment and osteoporosis still progressed. He died from severe respiratory tract infection at the age of 9.5 months. These findings suggest that the benefit of Cu-His in our case is limited which might be related to severe presentations and degree of ATP7A mutation.


Asunto(s)
Proteínas de Transporte de Catión , Epilepsia , Síndrome del Pelo Ensortijado , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/genética , Ceruloplasmina/análisis , Cobre , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Asia Oriental , Histidina/análogos & derivados , Histidina/genética , Humanos , Lactante , Masculino , Síndrome del Pelo Ensortijado/tratamiento farmacológico , Síndrome del Pelo Ensortijado/genética , Mutación , Compuestos Organometálicos , Fragmentos de Péptidos/metabolismo
19.
Environ Sci Technol ; 56(5): 3288-3298, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170956

RESUMEN

Birds are principally exposed to selenium (Se) through their diet. In long-lived and top predator seabirds, such as the giant petrel, extremely high concentrations of Se are found. Selenium speciation in biota has aroused great interest in recent years; however, there is a lack of information about the chemical form of Se in (sea)birds. The majority of publications focus on the growth performance and antioxidant status in broilers in relation to Se dietary supplementation. The present work combines elemental and molecular mass spectrometry for the characterization of Se species in wild (sea)birds. A set of eight giant petrels (Macronectes sp.) with a broad age range from the Southern Ocean were studied. Selenoneine, a Se-analogue of ergothioneine, was identified for the first time in wild avian species. This novel Se-compound, previously reported in fish, constitutes the major Se species in the water-soluble fraction of all of the internal tissues and blood samples analyzed. The levels of selenoneine found in giant petrels are the highest reported in animal tissues until now, supporting the trophic transfer in the marine food web. The characterization of selenoneine in the brain, representing between 78 and 88% of the total Se, suggests a crucial role in the nervous system. The dramatic decrease of selenoneine (from 68 to 3%) with an increase of Hg concentrations in the liver strongly supports the hypothesis of its key role in Hg detoxification.


Asunto(s)
Mercurio , Compuestos de Organoselenio , Selenio , Contaminantes Químicos del Agua , Animales , Pollos , Monitoreo del Ambiente , Histidina/análogos & derivados , Mercurio/análisis , Compuestos de Organoselenio/análisis , Selenio/análisis , Contaminantes Químicos del Agua/análisis
20.
J Mater Chem B ; 10(2): 236-246, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34852030

RESUMEN

The temporary silencing of disease-associated genes utilising short interfering RNA (siRNA) is a potent and selective route for addressing a wide range of life limiting disorders. However, the few clinically approved siRNA therapies rely on lipid based formulations, which although potent, provide limited chemical space to tune the stability, efficacy and tissue selectivity. In this study, we investigated the role of molar mass and histidinylation for poly(lysine) based non-viral vectors, synthesised through a fully aqueous thermal condensation polymerisation. Formulation and in vitro studies revealed that higher molar mass derivatives yielded smaller polyplexes attributed to a greater affinity for siRNA at lower N/P ratios yielding greater transfection efficiency, albeit with some cytotoxicity. Histidinylation had a negligible effect on formulation size, yet imparted a moderate improvement in biocompatibility, but did not provide any meaningful improvement over silencing efficiency compared to non-histidinylated derivatives. This was attributed to a greater degree of cellular internalisation for non-histidinylated analogues, which was enhanced with the higher molar mass material.


Asunto(s)
Portadores de Fármacos/química , Histidina/análogos & derivados , Polilisina/química , ARN Interferente Pequeño/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Humanos , Estructura Molecular , Peso Molecular , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...