Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.291
Filtrar
1.
ACS Chem Biol ; 19(4): 861-865, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38568215

RESUMEN

Eremophilanes exhibit diverse biological activities and chemical structures. This study reports the bioinformatics-guided reconstitution of the biosynthetic machinery of fungal eremophilanes, eremofortin C and sporogen-AO1, to elucidate their biosynthetic pathways. Their biosyntheses include P450-catalyzed multistep oxidation and enzyme-catalyzed isomerization by the DUF3237 family protein. Successful characterization of six P450s enabled us to discuss the functions of eremophilane P450s in putative eremophilane biosynthetic gene clusters, providing opportunities to understand the oxidative modification pathways of fungal eremophilanes.


Asunto(s)
Sesquiterpenos , Oxidación-Reducción , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Hongos/química , Hongos/metabolismo , Vías Biosintéticas , Biología Computacional/métodos
2.
Chembiochem ; 25(9): e202300822, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38487927

RESUMEN

This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.


Asunto(s)
Aminoácidos , Productos Biológicos , Productos Biológicos/química , Productos Biológicos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Hongos/química , Animales , Poríferos
3.
Mar Drugs ; 22(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393041

RESUMEN

Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.


Asunto(s)
Antineoplásicos , Productos Biológicos , Policétidos , Hongos/química , Aspergillus , Antineoplásicos/farmacología , Productos Biológicos/química , Policétidos/química
4.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393058

RESUMEN

Three new catecholic compounds, named meirols A-C (2-4), and one known analog, argovin (1), were isolated from the marine-derived fungus Meira sp. 1210CH-42. Their structures were determined by extensive analysis of 1D, 2D NMR, and HR-ESIMS spectroscopic data. Their absolute configurations were elucidated based on ECD calculations. All the compounds exhibited strong antioxidant capabilities with EC50 values ranging from 6.01 to 7.47 µM (ascorbic acid, EC50 = 7.81 µM), as demonstrated by DPPH radical scavenging activity assays. In the α-glucosidase inhibition assay, 1 and 2 showed potent in vitro inhibitory activity with IC50 values of 184.50 and 199.70 µM, respectively (acarbose, IC50 = 301.93 µM). Although none of the isolated compounds exhibited cytotoxicity against one normal and six solid cancer cell lines, 1 exhibited moderate cytotoxicity against the NALM6 and RPMI-8402 blood cancer cell lines with GI50 values of 9.48 and 21.00 µM, respectively. Compound 2 also demonstrated weak cytotoxicity against the NALM6 blood cancer cell line with a GI50 value of 29.40 µM.


Asunto(s)
Basidiomycota , Neoplasias Hematológicas , Humanos , Hongos/química , Antioxidantes/farmacología , Antioxidantes/química , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular
5.
Chem Biodivers ; 21(3): e202400118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349284

RESUMEN

Five new compounds, including four hydroxyphenylacetic acid derivatives, stachylines H-K (1-4), a derivative of hydroxyphenylethanol (5), as well as seven known compounds were obtained from a marine-derived fungus Fusarium oxysporum F0888 isolated from sediments in the South China Sea. The structures and absolute configurations of new compounds were determined by spectroscopic (IR, NMR, and HR-ESI-MS) analyses, comparison of optical rotations, and the modified Mosher's MTPA ester method. Antimicrobial and anti-inflammatory activities of compounds 1-12 were tested. Unfortunately, all of isolated compounds were inactivity.


Asunto(s)
Hongos , Fusarium , Antibacterianos/química , Hongos/química , Fusarium/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
6.
J Nat Prod ; 87(4): 1285-1305, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38375796

RESUMEN

The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.


Asunto(s)
Cianobacterias , Estructura Molecular , Animales , Cianobacterias/química , Poríferos/química , Productos Biológicos/química , Bacterias , Hongos/química , Antozoos/química , Urocordados/química , Plantas/química , Hidrocarburos Halogenados/química , Organismos Acuáticos
7.
Carbohydr Polym ; 327: 121662, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171680

RESUMEN

The cell surface of fungus contains a large number of ß-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal ß-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal ß-glucans have been investigated in animals and clinical trials. Studies have proved that fungal ß-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal ß-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of ß-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal ß-glucans with wound healing ability are summarized. Researches about fungal ß-glucan-containing biomaterials and structurally modified ß-glucans for wound healing are also involved.


Asunto(s)
beta-Glucanos , Animales , beta-Glucanos/farmacología , beta-Glucanos/uso terapéutico , beta-Glucanos/metabolismo , Cicatrización de Heridas , Colágeno/metabolismo , Macrófagos/metabolismo , Hongos/química
8.
Bioorg Chem ; 143: 107093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185012

RESUMEN

Fungi are microorganisms with biosynthetic potential that are capable of producing a wide range of chemically diverse and biologically interesting small molecules. Chemical epigenetic manipulation has been increasingly explored as a simple and powerful tool to induce the production of additional microbial secondary metabolites in fungi. This review focuses on chemical epigenetic manipulation in fungi and summarizes 379 epigenetic manipulation products discovered from 2008 to 2022 to promote the discovery of their medicinal value.


Asunto(s)
Epigénesis Genética , Hongos , Hongos/química , Metabolismo Secundario
9.
Phytochemistry ; 219: 113976, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237844

RESUMEN

A chemical fingerprinting approach utilizing LC-MS/MS coupled with 2D NMR data was established to characterize the profile of sorbicilinoid-type metabolites from a deep-sea derived fungus Penicillium rubens F54. Targeted isolation of the cultured fungus resulted in the discovery of 11 undescribed sorbicilinoids namely sorbicillinolides A-K (1-11). Their structures were identified by extensive analyses of the spectroscopic data, including the calculation of electronic circular dichroism and optical rotation for configurational assignments. The cyclopentenone core of sorbicillinolides A-D is likely derived from sorbicillin/dihydrosorbicillin through a newly oxidative rearrangement. The stereoisomers of sorbicillinolides E-G incorporate a nitrogen unit, forming a unique hydroquinoline nucleus. Sorbicillinolides A and C exhibited significant anti-neuroinflammation in LPS-stimulated BV-2 macrophages, achieved by potent inhibition of NO and PGE2 production through the interruption of RNA transcription of iNOS, COX-2 and IL6 in the NF-κB signaling pathway. Further investigation identified COX-2 as a potential target of sorbicillinolide A. These findings suggest sorbicillinolide A as a potential lead for the development of a non-steroidal anti-neuroinflammatory agent.


Asunto(s)
Penicillium , Espectrometría de Masas en Tándem , Ciclooxigenasa 2/metabolismo , Cromatografía Liquida , Macrófagos/metabolismo , Hongos/química , Penicillium/química
10.
Nat Prod Rep ; 41(5): 748-783, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38265076

RESUMEN

Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.


Asunto(s)
Hongos , Terpenos , Terpenos/metabolismo , Terpenos/química , Hongos/metabolismo , Hongos/química , Estructura Molecular , Productos Biológicos/metabolismo , Productos Biológicos/química , Sistema Enzimático del Citocromo P-450/metabolismo
11.
Nat Prod Res ; 38(4): 594-600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36938638

RESUMEN

Two new compounds (R)-6-((8S)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (1) and (R)-6-((8R)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (2), together with four known compounds were isolated from the marine-derived fungus Cladosporium halotolerans FS702. The structures of these compounds were determined on the basis of extensive spectroscopic analysis including 1D/2D NMR, IR, UV, HRESIMS, ECD calculations as well as the modified Mosher's method. Cytotoxic assay results showed that compound 2 had significant cytotoxic activity against SF-268, MCF-7, HepG-2, and A549 cells lines with IC50 values of 0.16, 0.47, 0.33 and 0.23 µM, respectively.


Asunto(s)
Antineoplásicos , Pironas , Línea Celular Tumoral , Pironas/farmacología , Antineoplásicos/química , Hongos/química , Cladosporium/química , Estructura Molecular
12.
J Basic Microbiol ; 64(2): e2300444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051942

RESUMEN

The aim of this study was to investigate the production, stability and applicability of colorants produced by filamentous fungi isolated from soil samples from the Amazon. Initially, the isolates were evaluated in a screening for the production of colorants. The influences of cultivation and nutritional conditions on the production of colorants by fungal isolates were investigated. The colorants produced by selected fungal isolates were chemically characterized using the Liquid Chromatography-Mass Spectrometry technique. The antimicrobial and cytotoxic activities, stability evaluation and applicability of the colorants were investigated. As results, we observed that the isolates Penicillium sclerotiorum P3SO224, Clonostachys rosea P2SO329 and Penicillium gravinicasei P3SO332 stood out since they produced the most intense colorants. Compounds produced by Penicillium sclerotiorum P3SO224 and Clonostachys rosea P2SO329 were identified as sclerotiorin and penicillic acid. The colorant fraction (EtOAc) produced by these species has antimicrobial activity, stability at temperature and at different pHs, stability when exposure to light and UV, and when exposed to different concentrations of salts, as well as being nontoxic and having the ability to dye fabrics and be used as a pigment in creams and soap. Considering the results found in this study, it was concluded that fungi from the soil in the Amazon have the potential to produce colorants with applications in the textile and pharmaceutical industries.


Asunto(s)
Antiinfecciosos , Hypocreales , Penicillium , Pigmentos Biológicos/química , Hongos/química , Suelo
13.
Fitoterapia ; 172: 105763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040094

RESUMEN

Filamentous fungi belonging to the genus Aspergillus are prodigious producers of alkaloids, particularly prenylated indole alkaloids, that often exhibit structurally diversified skeletons and potent biological activities. In this study, five prenylated indole alkaloids possessing a bicyclo[2.2.2]diazaoctane core ring system, including a novel derivative, namely aspertaichamide A (1), as well as four known compounds, (+)-stephacidin A (2), sclerotiamide (3), (-)-versicolamide B (4), and (+)-versicolamide B (5), were isolated and identified from A. taichungensis 299, an endophytic fungus obtained from the marine red alga Gelidium amansii. The chemical structures of the compounds were elucidated by comprehensive NMR and HRESIMS spectroscopic analyses. In addition to the previously reported prenylated indole alkaloids, aspertaichamide A (1) was characterized as having an unusual ring structure with the fusion of a 3-pyrrolidone dimethylbenzopyran to the bicyclo[2.2.2]diazaoctane moiety, which was rare in these kinds of compounds. The absolute configuration of 1 was determined by TDDFT-ECD calculations. In vitro cytotoxic assays revealed that the novel compound 1 possessed selective cytotoxic activity against five human tumor cell lines (A549, HeLa, HepG2, HCT-116, and AGS), with IC50 values of 1.7-48.5 µM. Most importantly, compound 1 decreased the viability of AGS cells in a concentration-dependent manner with an IC50 value of 1.7 µM. Further studies indicated that 1 may induce AGS cells programmed cell death via the apoptotic pathway.


Asunto(s)
Antineoplásicos , Aspergillus , Algas Comestibles , Rhodophyta , Humanos , Estructura Molecular , Aspergillus/química , Hongos/química , Alcaloides Indólicos , Antineoplásicos/farmacología
14.
Braz J Biol ; 83: e275573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126585

RESUMEN

The emergence of bacterial resistance to antimicrobials poses a significant health threat. To address this issue, exploring the fungal diversity in freshwater environments in the Amazon Forest has potential in the search for new antimicrobials. This study aimed to investigate the production of antibacterial metabolites by aquatic fungi from Amazon lakes, specifically Lake Juá and Lake Maicá (Brazil-PA). The fungal isolates were obtained from wood fragments submerged in these lakes, and the ethyl acetate extracts were evaluated for antibacterial activity against Staphylococcus aureus ATCC 25923, S. aureus (MRSA), ATCC 43300, Escherichia coli ATCC 25922, and E. coli (ESBL) NCTC 13353. Additionally, toxicity of the extracts (EtOAc with antimicrobial activity) against human fibroblasts MRC-5 was investigated. The study identified 40 fungal strains with antimicrobial screening, and the ethyl acetate extracts of Fluviatispora C34, Helicascus C18, Monodictys C15, and Fusarium solani LM6281 exhibited antibacterial activity. F. solani LM6281 showed the lowest minimum inhibitory concentration (MIC) of 50 µg/mL against S. aureus strains and MIC of 100 µg/mL against E. coli strains including ESBL. The cytotoxicity (IC50) of the extract (EtOAc) of F. solani LM6281 was 34.5 µg/mL. Preliminary studies of the TLC culture and RNM-H from the extract (EtOAc) of F. solani suggested the presence of substances from the class of terpenes, quinones, phenolics, and flavonoids. This study highlights the potential of submerged wood fungi in the Amazon region to produce antibacterial substances, thus identifying them as sources of novel bioactive compounds with potential use in the pharmaceutical industry and regional bioeconomy.


Asunto(s)
Antibacterianos , Hongos , Madera , Humanos , Antibacterianos/farmacología , Brasil , Escherichia coli , Hongos/química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Madera/microbiología
15.
Nanoscale ; 15(48): 19423-19447, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38018389

RESUMEN

Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Bacterias/química , Nanoestructuras/química , Hongos/química , Hongos/metabolismo , Plata/química , Hierro/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Tecnología Química Verde
16.
Mar Drugs ; 21(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37888445

RESUMEN

Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.


Asunto(s)
Antineoplásicos , Productos Biológicos , Humanos , Aspergillus/metabolismo , Antibacterianos/farmacología , Antineoplásicos/química , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Péptidos/química , Productos Biológicos/química , Organismos Acuáticos/química , Hongos/química
17.
Mar Drugs ; 21(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37888468

RESUMEN

Five new fusarin derivatives, steckfusarins A-E (1-5), and two known natural products (6, 7), were isolated and identified from the marine algicolous fungus Penicillium steckii SCSIO 41040. The new compounds, including absolute configurations, were determined by spectroscopic analyses and calculated electronic circular dichroism (ECD). All new compounds were evaluated for their antioxidant, antibacterial, antifungal, antiviral, cytotoxic, anti-inflammatory, antioxidant, cholesterol-lowering, acetyl cholinesterase (AChE) enzyme and 6-phosphofructo-2-kinase (PFKFB3) and phosphatidylinositol-3-kinase (PI3K) inhibitory activities. The biological evaluation results revealed that compound 1 exhibited radical scavenging activity against 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH), with an IC50 value of 74.5 µg/mL. In addition, compound 1 also showed weak anti-inflammatory activity at a concentration of 20 µM.


Asunto(s)
Antioxidantes , Penicillium , Estructura Molecular , Antioxidantes/farmacología , Hongos/química , Penicillium/química , Dicroismo Circular , Antiinflamatorios/farmacología
18.
J Nat Prod ; 86(10): 2342-2347, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37807846

RESUMEN

Four new aranotin-type epipolythiodioxopiperazines, graphiumins K-N (1-4), along with four known analogues (5-8), were isolated from the deep-sea-derived fungus Exophiala mesophila MCCC 3A00939. Their structures were elucidated by detailed interpretation of NMR and mass spectrometric data. The absolute configuration of the isolates was deduced by a single-crystal X-ray diffraction analysis and the comparisons of experimental electronic circular dichroism (ECD) data with calculated ECD spectra. Graphiumins K (1) and L (2) exhibited cytotoxic activities against the K562, H69AR, and MDA-MB-231 cancer cells with IC50 values ranging from 2.3 to 5.9 µM.


Asunto(s)
Antineoplásicos , Antineoplásicos/química , Piperazinas/farmacología , Hongos/química , Estructura Molecular
19.
Chem Biodivers ; 20(11): e202301425, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755366

RESUMEN

From marine sponge-associated fungus Hamigera avellanea, thirteen secondary metabolites including a pair of undescribed alkaloid enantiomers (+)-hamiavemin A (4S) (+)-1 and (-)-hamiavemin A (4R) (-)-1. Compound 1 was enantiomers resolved by the Chiralpak AS-3 column, using a hexane/isopropanol mobile phase. Their structures were determined based on extensive analyses of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configuration of (+)-1 and (-)-1 were assigned tentatively by ECD calculations. Among the isolates, compound 6 showed strongest antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enterica, and Candida albicans with the MIC values of 2, 2, 16, 32, 64, and 16 µg/mL, respectively, which were stronger than that of the positive control compound, kanamycin (MIC values ranging from 4 to 128 µg/mL). In addition, compounds 1, 2, and 9 showed moderate cytotoxic activity against three cancer cell lines, HepG2, A549, and MCF-7 with the IC50 values ranging from 55.35±1.70 to 83.02±2.85 µg/mL.


Asunto(s)
Alcaloides , Antiinfecciosos , Antineoplásicos , Poríferos , Animales , Antiinfecciosos/química , Poríferos/microbiología , Antibacterianos/química , Hongos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Alcaloides/farmacología , Pruebas de Sensibilidad Microbiana
20.
BMC Complement Med Ther ; 23(1): 347, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777711

RESUMEN

BACKGROUND: Endophytic fungi have recently been recognized as an impressive source of natural biomolecules. The primary objective of the research was to isolate fungal endophytes from Thysanolaena maxima Roxb., Dracaena spicata Roxb. and Aglaonema hookerianum Schott. of Bangladesh and assess their pharmacological potentialities focusing on antimicrobial, antioxidant, and cytotoxic properties. METHODS: The fungal isolates were identified up to the genus level by analyzing their macroscopic and microscopic characteristics. Ethyl acetate extracts of all the fungal isolates were screened for different bioactivities, including antimicrobial (disc diffusion method), antioxidant (DPPH scavenging assay), and cytotoxic (brine shrimp lethality bioassay) activities. RESULTS: Among the thirteen isolates, Fusarium sp. was the most recognized genus, while the others belonged to Colletotrichum sp. and Pestalotia sp. Comparing the bioactivity of all the extracts, Fusarium sp. was shown to be the most effective endophyte, followed by Colletotrichum sp. and Pestalotia sp. In the antimicrobial study, two isolates of Fusarium sp. (internal strain nos. DSLE-1 and AHPE-4) showed inhibitory activity against all the tested bacteria and the highest zone of inhibition (15.5 ± 0.4 mm) was exerted by AHPE-4 against Bacillus subtillis. All the fungal isolates produced mild to moderate free radical scavenging activity, where the highest antioxidant activity was revealed by one isolate of Fusarium sp. (internal strain no. AHPE-3) with an IC50 value of 84.94 ± 0.41 µg/mL. The majority of Fusarium sp. isolates exhibited notable cytotoxic activity, where AHPE-4 exhibited the highest cytotoxicity, having the LC50 value of 14.33 ± 4.5 µg/mL. CONCLUSION: The findings of the study endorsed that the fungal endophytes isolated from T. maxima, D. spicata, and A. hookerianum hold potential as valuable origins of bioactive substances. Nevertheless, more comprehensive research is warranted, which could develop novel natural compounds from these endophytes to treat various infectious and cancerous diseases.


Asunto(s)
Antiinfecciosos , Dracaena , Antioxidantes/farmacología , Antiinfecciosos/farmacología , Bacterias , Hongos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA