Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
BMC Microbiol ; 24(1): 290, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095741

RESUMEN

INTRODUCTION: Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD: Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT: The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION: When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.


Asunto(s)
Antibacterianos , Biopelículas , Hormesis , Pseudomonas aeruginosa , Óxido de Zinc , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Óxido de Zinc/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Hormesis/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Nanopartículas/química , Fibrosis Quística/microbiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Difracción de Rayos X , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Relación Dosis-Respuesta a Droga
3.
Physiol Plant ; 176(1): e14163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141204

RESUMEN

The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.


Asunto(s)
Polen , Radiación Ionizante , Especies Reactivas de Oxígeno , Polen/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Hormesis/efectos de la radiación , Germinación/efectos de la radiación
4.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969726

RESUMEN

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Asunto(s)
Chlorella , Hormesis , Metabolismo de los Lípidos , Chlorella/metabolismo , Chlorella/efectos de la radiación , Chlorella/crecimiento & desarrollo , Metabolismo de los Lípidos/efectos de la radiación , Hormesis/efectos de la radiación , Radiación Ionizante , Biomasa
5.
J Hazard Mater ; 476: 135160, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991646

RESUMEN

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.


Asunto(s)
Desnitrificación , Desinfectantes , Nitrificación , Nitrificación/efectos de los fármacos , Desinfectantes/toxicidad , Desnitrificación/efectos de los fármacos , Hormesis/efectos de los fármacos , Xilenos/toxicidad , Aerobiosis , Sinergismo Farmacológico , Contaminantes Químicos del Agua/toxicidad , Procesos Heterotróficos , Nitrógeno/metabolismo
6.
Mech Ageing Dev ; 220: 111960, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971236

RESUMEN

Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.


Asunto(s)
Hormesis , Humanos , Animales , Envejecimiento Saludable/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico
7.
Biol Res ; 57(1): 37, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824571

RESUMEN

It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.


Asunto(s)
Hormesis , Mitocondrias , Estrés Oxidativo , Humanos , Hormesis/fisiología , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/fisiopatología , Transducción de Señal/fisiología
8.
J Nucl Med ; 65(8): 1173-1174, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906558

RESUMEN

The linear no-threshold (LNT) model, which asserts that any level of ionizing radiation increases cancer risk, has been the basis of global radiation protection policies since the 1950s. Despite ongoing endorsements, a growing body of evidence challenges the LNT model, suggesting instead that low-level radiation exposure might reduce cancer risk, a concept known as radiation hormesis. This editorial examines the persistence of the LNT model despite evidence favoring radiation hormesis and proposes a solution: a public, online debate between proponents of the LNT model and advocates of radiation hormesis. This debate, organized by a government agency like Medicare, would be transparent and thorough, potentially leading to a shift in radiation protection policies. Acceptance of radiation hormesis could significantly reduce cancer mortality rates and streamline radiation safety regulations, fostering medical innovation and economic growth.


Asunto(s)
Neoplasias Inducidas por Radiación , Humanos , Neoplasias Inducidas por Radiación/prevención & control , Protección Radiológica , Hormesis , Modelos Lineales
9.
Environ Sci Technol ; 58(21): 9314-9327, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38709515

RESUMEN

Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.


Asunto(s)
Hormesis , Medición de Riesgo , Contaminantes Químicos del Agua , Fluorocarburos , Ácidos Alcanesulfónicos , Caprilatos
10.
Sci Total Environ ; 932: 172856, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697534

RESUMEN

Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 µg/L and 20.08 % by 15.78 µg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.


Asunto(s)
Antibacterianos , Chlorella , Hormesis , Ofloxacino , Contaminantes Químicos del Agua , Chlorella/efectos de los fármacos , Ofloxacino/toxicidad , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Microalgas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
J Hazard Mater ; 472: 134616, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754232

RESUMEN

Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.


Asunto(s)
Farmacorresistencia Microbiana , Hormesis , Salinidad , Microbiología del Suelo , Farmacorresistencia Microbiana/genética , Hormesis/efectos de los fármacos , Antibacterianos/farmacología , Genes Bacterianos/efectos de los fármacos , Suelo/química , Bacterias/efectos de los fármacos , Bacterias/genética
12.
Trends Mol Med ; 30(7): 633-641, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744580

RESUMEN

Hormesis is a phenomenon whereby low-level stress can improve cellular, organ, or organismal fitness in response to a subsequent similar or other stress insult. Whereas hormesis is thought to contribute to the fitness benefits arising from symbiotic host-microbe interactions, the putative benefits of hormesis in host-pathogen interactions have yet to be explored. Hormetic responses have nonetheless been reported in experimental models of infection, a common feature of which is regulation of host mitochondrial function. We propose that these mitohormetic responses could be harnessed therapeutically to limit the severity of infectious diseases.


Asunto(s)
Hormesis , Interacciones Huésped-Patógeno , Mitocondrias , Hormesis/fisiología , Humanos , Animales , Mitocondrias/metabolismo , Adaptación Fisiológica , Infecciones , Estrés Fisiológico , Enfermedades Transmisibles
13.
Food Chem Toxicol ; 187: 114626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556157

RESUMEN

Rutin is a flavonoid present in numerous fruits and vegetables and therefore widely consumed by humans. It is also a popular dietary supplement of 250-500 mg/day. There is considerable consumer interest in rutin due to numerous reports in the biomedical literature of its multi-system chemo-preventive properties. The present paper provides the first assessment of rutin-induced hormetic concentration/dose responses, their quantitative features and mechanistic basis, along with their biological, biomedical, clinical, and public health implications. The findings indicate that rutin-induced hormetic dose responses are widespread, being reported in numerous biological models and cell types for a wide range of endpoints. Of critical importance is that the optimal hormetic findings shown in in vitro systems are currently not achievable for human populations due to low gastrointestinal tract bioavailability. These findings have the potential to strengthen future experimental studies with rutin, particularly concerning study design parameters.


Asunto(s)
Hormesis , Rutina , Humanos , Rutina/farmacología , Flavonoides/farmacología , Modelos Biológicos , Verduras
14.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542306

RESUMEN

Common variants in the iron regulatory protein HFE contribute to systematically increased iron levels, yet the effects in the brain are not fully characterized. It is commonly believed that iron dysregulation is a key contributor to neurodegenerative disease due to iron's ability to catalyze reactive oxygen species production. However, whether HFE variants exacerbate or protect against neurodegeneration has been heavily debated. Some claim that mutated HFE exacerbates oxidative stress and neuroinflammation, thus predisposing carriers to neurodegeneration-linked pathologies. However, H63D HFE has also been shown to slow the progression of multiple neurodegenerative diseases and to protect against environmental toxins that cause neurodegeneration. These conflicting results showcase the need to further understand the contribution of HFE variants to neurodegenerative disease heterogeneity. Data from mouse models consistently demonstrate robust neuroprotection against toxins known to increase the risk of neurodegenerative disease. This may represent an adaptive, or hormetic, response to increased iron, which leaves cells better protected against future stressors. This review describes the current research regarding the contribution of HFE variants to neurodegenerative disease prognosis in the context of a hormetic model. To our knowledge, this is the first time that a hormetic model for neurodegenerative disease has been presented.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedades Neurodegenerativas/genética , Proteína de la Hemocromatosis/genética , Antígenos de Histocompatibilidad Clase I/genética , Hormesis , Mutación , Hierro/metabolismo
15.
Reprod Toxicol ; 125: 108575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462211

RESUMEN

The generally undesired effects of exocannabinoids on male reproduction include alterations in testicular cell proliferation and function, as well as apoptosis induction. However, this paradigm has been challenged by the ability of endocannabinoids to regulate reproductive function. The present study addresses these paradoxical facts by investigating the effects of the endocannabinoid 2-arachidonoyl glycerol (2-AG) on mouse Sertoli cells' survival and apoptosis, with a mechanistic insight into Sertoli cell-based growth factors' production. The Mus musculus Sertoli cell line (TM4) was exposed to different concentrations of 2-AG, and cell viability was evaluated using MTT assay. Growth factors' gene and protein expressions were analyzed through RT-PCR and western blotting. 2-AG concentration dependently increased TM4 viability, with a slight increase starting at 0.0001 µM, a peak of 190% of the control level at 1 µM, and a decrease at 3 µM. Moreover, 2-AG paradoxically altered mRNA expression of caspase-3 and growth factors. Caspase-3 mRNA expression was down-regulated, and growth factors mRNA and protein expression were up-regulated when using a low concentration of 2-AG (1 µM). Opposite effects were observed by a higher concentration of 2-AG (3 µM). These paradoxical effects of 2-AG can be explained through the concept of hormesis. The results indicate the pivotal role of 2-AG in mediating Sertoli cell viability and apoptosis, at least in part, through altering growth factors secretion. Furthermore, they suggest the involvement of endocannabinoids in Sertoli cell-based physiological and pathological conditions and reflect the ability of abnormally elevated 2-AG to mimic the actions of exocannabinoids in reproductive dysfunction.


Asunto(s)
Cannabinoides , Endocannabinoides , Ratones , Animales , Masculino , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Células de Sertoli , Caspasa 3/metabolismo , Glicerol/metabolismo , Glicerol/farmacología , Hormesis , Supervivencia Celular , Apoptosis , ARN Mensajero/metabolismo , Fertilidad , Células Cultivadas
17.
Chem Biol Interact ; 392: 110930, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432405

RESUMEN

This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.


Asunto(s)
Hormesis , Modelos Biológicos
18.
Pest Manag Sci ; 80(8): 3726-3733, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38469952

RESUMEN

BACKGROUND: Myzus persicae, a serious sap-sucking pest of a large variety of host plants in agriculture, is traditionally controlled using chemical insecticides but there is interest in using biopesticides as restrictions are increasingly placed on the use of broad-spectrum pesticides. RESULTS: Here, we show that in Petri dish experiments, high concentrations of the fungal entomopathogen Beauveria bassiana led to rapid mortality of M. persicae, although at a low concentration (1 × 104 conidia mL-1) there is a hormetic effect in which survival and fecundity are enhanced. Hormetic effects persisted across a generation with reduced development time and increased fecundity in the offspring of M. persicae exposed to B. bassiana. The whole-plant experiment points to a hormetic effect being detected in two out of three tested lines. The impact of these effects might also depend on whether M. persicae was transinfected with the endosymbiont Rickettsiella viridis, which decreases fecundity and survival compared with aphids lacking this endosymbiont. This fecundity cost was ameliorated in the generation following exposure to the entomopathogen. CONCLUSION: Although B. bassiana is effective in controlling M. persicae especially at higher spore concentrations, utilization of this entomopathogen requires careful consideration of hormetic effects at lower spore concentrations, and further research to optimize its application for sustainable agriculture is recommended. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Áfidos , Beauveria , Hormesis , Control Biológico de Vectores , Beauveria/fisiología , Animales , Áfidos/microbiología , Áfidos/fisiología , Áfidos/crecimiento & desarrollo , Fertilidad
19.
Cryobiology ; 115: 104881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38437899

RESUMEN

Cryoprotectant toxicity is a limiting factor for the cryopreservation of many living systems. We were moved to address this problem by the potential of organ vitrification to relieve the severe shortage of viable donor organs available for human transplantation. The M22 vitrification solution is presently the only solution that has enabled the vitrification and subsequent transplantation with survival of large mammalian organs, but its toxicity remains an obstacle to organ stockpiling for transplantation. We therefore undertook a series of exploratory studies to identify potential pretreatment interventions that might reduce the toxic effects of M22. Hormesis, in which a living system becomes more resistant to toxic stress after prior subtoxic exposure to a related stress, was investigated as a potential remedy for M22 toxicity in yeast, in the nematode worm C. elegans, and in mouse kidney slices. In yeast, heat shock pretreatment increased survival by 18-fold after exposure to formamide and by over 9-fold after exposure to M22 at 30 °C; at 0 °C and with two-step addition, treatment with 90% M22 resulted in 100% yeast survival. In nematodes, surveying a panel of pretreatment interventions revealed 3 that conferred nearly total protection from acute whole-worm M22-induced damage. One of these protective pretreatments (exposure to hydrogen peroxide) was applied to mouse kidney slices in vitro and was found to strongly protect nuclear and plasma membrane integrity in both cortical and medullary renal cells exposed to 75-100% M22 at room temperature for 40 min. These studies demonstrate for the first time that endogenous cellular defenses, conserved from yeast to mammals, can be marshalled to substantially ameliorate the toxic effects of one of the most toxic single cryoprotectants and the toxicity of the most concentrated vitrification solution so far described for whole organs.


Asunto(s)
Caenorhabditis elegans , Criopreservación , Crioprotectores , Animales , Crioprotectores/farmacología , Ratones , Caenorhabditis elegans/efectos de los fármacos , Criopreservación/métodos , Riñón/efectos de los fármacos , Vitrificación , Hormesis , Saccharomyces cerevisiae
20.
Pest Manag Sci ; 80(7): 3628-3639, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456569

RESUMEN

BACKGROUND: Glyphosate is the most widely applied herbicide in the world. Hormesis caused by low glyphosate doses has been widely documented in many plant species. However, the specific adaptative mechanism of plants responding to glyphosate hormesis stimulation remains unclear. This study focused on the biphasic relationship between glyphosate dose and tomato plant growth, and how glyphosate hormesis stimulates plant growth and enhances tolerance to environmental stress. RESULTS: We constructed a hormesis model to describe the biphasic relationship with a maximal stimulation (MAX) of 162% above control by glyphosate at 0.063 g ha-1. Low-dose glyphosate increased photosynthetic pigment contents and improve photosynthetic efficiency, leading to plant growth stimulation. We also found that glyphosate hormesis enhanced plant tolerance to diuron (DCMU; a representative photosynthesis inhibitor) by triggering the nonphotochemical chlorophyll fluorescence quenching (NPQ) reaction to dissipate excess energy stress from photosystem II (PSII). Transcriptomic analysis and quantitative real-time polymerase chain reaction results revealed that the photosynthesis-antenna proteins pathway was the most sensitive to glyphosate hormesis, and PsbS (encoding photosystem II subunit S), ZEP (encoding zeaxanthin epoxidase) and VDE (encoding violaxanthin de-epoxidase) involved in NPQ played crucial roles in the plant response to glyphosate hormesis. CONCLUSION: These results provide novel insights into the mechanisms of plant hormesis and is meaningful to the application of glyphosate hormesis in agriculture. © 2024 Society of Chemical Industry.


Asunto(s)
Glicina , Glifosato , Herbicidas , Hormesis , Fotosíntesis , Solanum lycopersicum , Estrés Fisiológico , Glicina/análogos & derivados , Glicina/farmacología , Hormesis/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Herbicidas/farmacología , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...