Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
J Gerontol A Biol Sci Med Sci ; 78(Suppl 1): 38-43, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37325967

RESUMEN

The discovery of the growth hormone secretagogues (GHS) and the reverse pharmacology leading to the discovery of GHS receptor which enabled the identification of ghrelin as the natural ligand for the receptor have opened a new horizon in growth hormone (GH) physiology, pathophysiology, and therapeutics. Major progress has been made and we now have orally active GHS which are able to restore optimal pulsatile GH secretion which cannot be overstimulated as insulin-like growth factor feedback regulates the peaks to the optimum level. This enables GH to be restored in the older to levels normally seen in 20- to 30-year-old people; this leads to an increase in fat-free mass and redistribution of fat to the limbs. As these agents are ultimately approved and investigated further, it is likely that they will be shown to restore growth in children with moderate-to-mild GH deficiency; their benefits will be investigated in other indications such as nonalcoholic fatty liver disease, frailty, anemia, osteoporosis, and immune compromise in older subjects. The exquisite regulation of GH secretion reflects the importance of GH pulsatility in the regulation of somatotroph action of GH.


Asunto(s)
Ghrelina , Hormona de Crecimiento Humana , Anciano , Humanos , Hormona del Crecimiento , Hormona Liberadora de Hormona del Crecimiento/farmacología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Hormona de Crecimiento Humana/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Secretagogos , Adulto Joven
2.
Trends Endocrinol Metab ; 32(6): 338-340, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33771415

RESUMEN

Growth hormone releasing hormone (GHRH) is the integral regulator of the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis. It exerts mitogenic effects in a plethora of progressive cancers. Recent evidence suggests the emerging role of that 44-amino acid (aa) neuropeptide in lung endothelial barrier function (EBF), which will be discussed herein.


Asunto(s)
Endotelio/fisiología , Hormona Liberadora de Hormona del Crecimiento , Hormona de Crecimiento Humana , Factor I del Crecimiento Similar a la Insulina , Pulmón/fisiología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Humanos
3.
J Neurosci ; 40(49): 9455-9466, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158965

RESUMEN

Gonadal steroids modulate growth hormone (GH) secretion and the pubertal growth spurt via undefined central pathways. GH-releasing hormone (GHRH) neurons express estrogen receptor α (ERα) and androgen receptor (AR), suggesting changing levels of gonadal steroids during puberty directly modulate the somatotropic axis. We generated mice with deletion of ERα in GHRH cells (GHRHΔERα), which displayed reduced body length in both sexes. Timing of puberty onset was similar in both groups, but puberty completion was delayed in GHRHΔERα females. Lack of AR in GHRH cells (GHRHΔAR mice) induced no changes in body length, but puberty completion was also delayed in females. Using a mouse model with two reporter genes, we observed that, while GHRHtdTom neurons minimally colocalize with Kiss1hrGFP in prepubertal mice, ∼30% of GHRH neurons coexpressed both reporter genes in adult females, but not in males. Developmental analysis of Ghrh and Kiss1 expression suggested that a subpopulation of ERα neurons in the arcuate nucleus of female mice undergoes a shift in phenotype, from GHRH to Kiss1, during pubertal transition. Our findings demonstrate that direct actions of gonadal steroids in GHRH neurons modulate growth and puberty and indicate that GHRH/Kiss1 dual-phenotype neurons play a sex-specific role in the crosstalk between the somatotropic and gonadotropic axes during pubertal transition.SIGNIFICANCE STATEMENT Late maturing adolescents usually show delayed growth and bone age. At puberty, gonadal steroids have stimulatory effects on the activation of growth and reproductive axes, but the existence of gonadal steroid-sensitive neuronal crosstalk remains undefined. Moreover, the neural basis for the sex differences observed in the clinical arena is unknown. Lack of ERα in GHRH neurons disrupts growth in both sexes and causes pubertal delay in females. Deletion of androgen receptor in GHRH neurons only delayed female puberty. In adult females, not males, a subset of GHRH neurons shift phenotype to start producing Kiss1. Thus, direct estrogen action in GHRH/Kiss1 dual-phenotype neurons modulates growth and puberty and may orchestrate the sex differences in endocrine function observed during pubertal transition.


Asunto(s)
Receptor alfa de Estrógeno/fisiología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Crecimiento/fisiología , Kisspeptinas/fisiología , Maduración Sexual/fisiología , Transducción de Señal/fisiología , Animales , Receptor alfa de Estrógeno/genética , Femenino , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/fisiología , Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Ratones , Ratones Noqueados , Receptores Androgénicos/fisiología , Caracteres Sexuales , Maduración Sexual/genética , Transducción de Señal/genética
4.
Atherosclerosis ; 296: 59-65, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065979

RESUMEN

BACKGROUND AND AIMS: The insulin-like growth factor (IGF)-1 signalling pathway has been implicated in the pathogenesis of atherosclerosis; however, the mechanism underlying its role in stroke remains unexplained. Herein, we aimed to explore the effects of genetic polymorphisms in the IGF1 pathway on stroke in the Chinese Han population. METHODS: Twenty-six single-nucleotide polymorphisms (SNPs) in IGF1 pathway genes were genotyped in a case-control study consisting of 2070 stroke cases and 2243 controls. Main genetic effects and gene-gene interactive effects of the IGF1 pathway were evaluated. Weighted genetic risk scores (wGRS) were computed, and the associations between wGRS and gene expression were analysed. RESULTS: The variants at GHRH rs6032470 were significantly associated with high risk of hemorrhagic stroke (HS), and the adjusted OR (95%CI) was 1.368 (1.136-1.647). Significant additive interaction between rs6032470 and gender was detected for HS and ischemic stroke (IS). The association of rs6032470 and stroke was stronger in males than in females. Additionally, a significant gene-gene interaction of rs6032470-rs1874479 (IGFBP1) in relation to HS risk was identified (p < 0.05). IGF1 mRNA expression was significantly upregulated in IS, while it was linearly downregulated across rs6214 genotypes. In addition, IGFBP3 transcript variant 2 mRNA level was negatively correlated with wGRS (r = -0.285, p = 0.005). CONCLUSIONS: Our findings indicated that the IGF1 signalling pathway genes potentiated the risk of stroke through both main effects and gene-gene interactions. The genetic effect of GHRH rs6032470 on stroke was gender dependent. The wGRS of IGF1 pathway genes may be an independent predictor of stroke risk.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/genética , Factor I del Crecimiento Similar a la Insulina/genética , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , Accidente Cerebrovascular/genética , Adulto , Distribución por Edad , Anciano , Estudios de Casos y Controles , China/epidemiología , Diabetes Mellitus/epidemiología , Dislipidemias/epidemiología , Epistasis Genética , Etnicidad/genética , Femenino , Predisposición Genética a la Enfermedad , Hormona Liberadora de Hormona del Crecimiento/fisiología , Humanos , Hipertensión/epidemiología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Accidente Cerebrovascular/epidemiología , Transcripción Genética
5.
Front Horm Res ; 48: 147-159, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28245459

RESUMEN

Most scientific reports debate the thymotropic and immuno-stimulating properties of the somatotrope growth hormone-releasing hormone (GHRH)/growth hormone (GH)/insulin-like growth factor (IGF)-1 axis, but there is still some disagreement about the physiological role of this axis in basal conditions. Moreover, some authors have hypothesized that the physiological role of the somatotrope axis only appears in stressful conditions (such as sepsis or infective and inflammatory diseases). This chapter will provide an extended overview of the expression of the components (signals and receptors) of the somatotrope axis and their properties on cells of the innate and adaptive immune system. It will also summarize some clinical studies suggesting a benefit for a short-term GH treatment in acute immunodeficiencies, and the importance of GH supplementation in adult GH deficiency. A new transgenic mouse model, the hypothalamic GHRH-deficient (Ghrh-/-) mouse, which exhibits a severe deficiency of the somatotrope axis, will be presented since it will be of great help in further deciphering the regulation by the GHRH/GH/IGF-1 axis on both immune development and function. Finally, we will discuss the implication of aging-related somatopause in relation to the general context of Immunosenescence.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/fisiología , Hormona del Crecimiento/fisiología , Sistema Inmunológico/fisiología , Inmunosenescencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Animales , Humanos
6.
Peptides ; 86: 153-161, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27816751

RESUMEN

Triple-negative breast cancer (TNBC) is a subset of breast cancers which is negative for expression of estrogen and progesterone receptors and human epidermal growth factor receptor-2 (HER2). Chemotherapy is currently the only form of treatment for women with TNBC. Growth hormone-releasing hormone (GHRH) and epidermal growth factor (EGF) are autocrine/paracrine growth factors in breast cancer and a substantial proportion of TNBC expresses receptors for GHRH and EGF. The aim of this study was to evaluate the interrelationship between both these signaling pathways in MDA-MB-468 human TNBC cells. We evaluated by Western blot assays the effect of GHRH on transactivation of EGF receptor (EGFR) as well as the elements implicated. We assessed the effect of GHRH on migration capability of MDA-MB-468 cells as well as the involvement of EGFR in this process by means of wound-healing assays. Our findings demonstrate that in MDA-MB-468 cells the stimulatory activity of GHRH on tyrosine phosphorylation of EGFR is exerted by two different molecular mechanisms: i) through GHRH receptors, GHRH stimulates a ligand-independent activation of EGFR involving at least cAMP/PKA and Src family signaling pathways; ii) GHRH also stimulates a ligand-dependent activation of EGFR implicating an extracellular pathway with an important role for metalloproteinases. The cross-talk between EGFR and GHRHR may be impeded by combining drugs acting upon GHRH receptors and EGFR family members. This combination of GHRH receptors antagonists with inhibitors of EGFR signalling could enhance the efficacy of both types of agents as well as reduce their doses increasing therapeutic benefits in management of human breast cancer.


Asunto(s)
Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/fisiología , Activación Transcripcional , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Receptores ErbB/metabolismo , Femenino , Humanos , Metaloproteinasas de la Matriz/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Familia-src Quinasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(7): 1895-900, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831066

RESUMEN

Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1-dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Modelos Animales de Enfermedad , Dislipidemias/fisiopatología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Animales , Dislipidemias/terapia , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Intestino Delgado/metabolismo , Masculino , Ratas , Ratas Wistar , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Estreptozocina
8.
Endocrinology ; 156(9): 3239-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26110916

RESUMEN

Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3ß, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Apoptosis , Diferenciación Celular , Línea Celular , Supervivencia Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa
9.
Elife ; 2: e01098, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24175087

RESUMEN

We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI:http://dx.doi.org/10.7554/eLife.01098.001.


Asunto(s)
Restricción Calórica , Hormona Liberadora de Hormona del Crecimiento/fisiología , Longevidad , Animales , Perfilación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/uso terapéutico , Hipopituitarismo/tratamiento farmacológico , Hígado/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo , Xenobióticos/metabolismo
10.
Growth Horm IGF Res ; 23(6): 237-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24021480

RESUMEN

OBJECTIVE: Growth hormone deficiency (GHD) leads to growth failure and changes in body composition including increased fat accumulation and reduced lean body mass in both humans and rodents. The aim of this study was to characterize the consequences of isolated GHD (IGHD) on adiposity, total body weight (TBW), and food intake in a mouse model of autosomal recessive IGHD due to targeted ablation of the GH-releasing hormone (GHRH) gene [GHRH knockout (GHRHKO)]. Animals were also analyzed with respect to leptin, adiponectin and visfatin circulating levels and gene expression in both intra-abdominal and subcutaneous fat. DESIGN: We studied 8 male mice homozygous for GHRHKO allele (-/-) and 8 heterozygous (+/-) animals as controls. Feeding and TBW data were collected weekly from 3 through 5 months of age. Animals were then euthanized for measurement of body length and intra-abdominal (epididymal and retroperitoneal) and subcutaneous (interscapular, axillary, gluteal and inguinal) fat weights, and for blood collection for leptin, adiponectin and visfatin measurement. Gene expression of leptin, adiponectin and visfatin in adipose tissue was evaluated by real-time reverse transcription polymerase chain reaction. RESULTS: GHRHKO mice had significantly increased relative intra-abdominal (P<0.01) and subcutaneous (P<0.0001) fat, accompanied by significantly increased food intake per TBW (P<0.01), whereas - despite 40% higher food consumption--TBW change was not different from controls over the 2 month period. Adiponectin and visfatin mRNA levels were decreased in both intra-abdominal (P<0.001) and subcutaneous fat (P<0.0001), while leptin mRNA levels were not different from controls. Conversely, serum adiponectin levels were higher in GHRHKO mice (P<0.0001), whereas serum visfatin and leptin did not significantly differ from controls. CONCLUSIONS: IGHD due to targeted ablation of the GHRH gene in mice is associated with increased relative subcutaneous and intra-abdominal fat mass and higher food consumption which is not related to changes in circulating leptin.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Enanismo Hipofisario/metabolismo , Ingestión de Alimentos/fisiología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Adipoquinas/genética , Animales , Enanismo Hipofisario/genética , Heterocigoto , Homocigoto , Leptina/genética , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Pharmacol Sci ; 122(3): 193-204, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23823934

RESUMEN

Release of growth hormone (GH) from the somatotroph is regulated by binding GH-releasing hormone (GHRH) to its cognate receptor (GHRHR), one of the members of the G protein-coupled receptor (GPCR) superfamily. Proteins bound to the carboxy (C)-terminus of GPCR have been reported to regulate intracellular trafficking and function of the receptor; however, no functionally significant protein associated with GHRHR has been reported. We have identified a protein interacting with C-kinase 1 (PICK1) as a binding partner of GHRHR. In vitro binding assay revealed the PDZ-domain of PICK1 and the last four amino acid residues of GHRHR were prerequisite for the interaction. Further, in vivo association of these proteins was confirmed. Immunostaining data of a stable cell line expressing GHRHR with or without PICK1 suggested the C-terminus of GHRHR promoted cell surface expression of GHRHR and PICK1 affected the kinetics of the cell surface expression of GHRHR. Furthermore, cAMP production assay showed the C-terminus of GHRHR is involved in the regulation of receptor activation, and the interaction of GHRHR with PICK1 may influence intensities of the signal response after ligand stimulation. Thus, the interaction of the C-terminus of GHRHR with PICK1 has a profound role in regulating the trafficking and the signaling of GHRHR. [Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.12287FP].


Asunto(s)
Proteínas Portadoras/fisiología , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/fisiología , Proteínas Nucleares/fisiología , Dominios PDZ/fisiología , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Humanos , Masculino , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas Sprague-Dawley
12.
Praxis (Bern 1994) ; 102(13): 777-84, 2013 Jun 19.
Artículo en Alemán | MEDLINE | ID: mdl-23773936

RESUMEN

Growth Hormone therapy has been used therapeutically for over 50 years. Until recently, growth hormone therapy has been restricted for children and adolescents with proven hypothalamic-pituitary short stature. Today some other causes - but not all - can be treated with growth hormone. To the well-established indications belong apart from proven growth hormone deficiency, children with Turner Syndrome and with Prader Willi Syndrome, children born small for gestational age without catch-up growth and children with chronic kidney disease and with some haematological and oncological diseases. Careful and accurate diagnosis is essential. Growth hormone therapy is rare in everyday practice and requires close cooperation with a pediatric endocrinologist.


L'hormone de croissance est utilisée depuis 50 ans à des fins thérapeutiques. Jusque à récemment seule une petite taille causée par une atteinte de l'axe hypothalamo-hypophysaire était une indication à un traitement par hormone de croissance. Actuellement, des étiologies variées de petite taille peuvent être traitées par hormone de croissance. Parmi les indications, on peut citer un déficit en hormone de croissance, les syndromes de Turner et de Prader-Willi, un retard de croissance intra-utérin sans rattrapage de la taille, et aussi une insuffisance rénale ou certaines maladies hématologiques ou oncologiques. Avant le traitement un diagnostic précis est essentiel. Les différentes indications qui peuvent amener à un traitement sont rares dans la pratique quotidienne, il est donc important de favoriser une prise en charge commune avec l'endocrinologue pédiatre.


Asunto(s)
Trastornos del Crecimiento/tratamiento farmacológico , Hormona de Crecimiento Humana/uso terapéutico , Adolescente , Estatura/efectos de los fármacos , Estatura/fisiología , Niño , Conducta Cooperativa , Trastornos del Crecimiento/etiología , Trastornos del Crecimiento/fisiopatología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Hormona de Crecimiento Humana/efectos adversos , Hormona de Crecimiento Humana/fisiología , Humanos , Factor I del Crecimiento Similar a la Insulina/fisiología , Comunicación Interdisciplinaria , Valores de Referencia , Factores de Riesgo
13.
Endocr Dev ; 25: 49-58, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652391

RESUMEN

Growth hormone (GH) is secreted by the pituitary gland in a pulsatile manner. It is accepted that this pulsatility is primarily controlled by the hypothalamus, although this secretion can also be modulated by factors from GH-targeted organs, the pituitary and other regions of the central nervous systems, or by factors arriving from peripheral organs. In mammals, hypothalamic control of GH pulsatility is classically regulated by the interplay of two opposing hormones, stimulatory GHRH and inhibitory somatostatin (SS). Recognition of the gastric ghrelin peptide as the natural ligand for GH secretagogue receptor type 1a (GHS-R1a) added a new element to the complex physiological regulation of GH secretion and clarified some of its aspects that were previously not fully understood. In this review, we examine data that suggest that ghrelin may regulate GH secretion, as well as ghrelin's possible use as a therapeutic agent.


Asunto(s)
Ghrelina/fisiología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Hormona del Crecimiento/metabolismo , Animales , Ghrelina/genética , Ghrelina/farmacología , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/farmacología , Humanos , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Vías Secretoras/efectos de los fármacos , Vías Secretoras/genética
14.
JAMA Neurol ; 70(7): 883-90, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23689947

RESUMEN

IMPORTANCE: Growth hormone-releasing hormone (GHRH) has been previously shown to have cognition-enhancing effects. The role of neurotransmitter changes, measured by proton magnetic resonance spectroscopy, may inform the mechanisms for this response. OBJECTIVE: To examine the neurochemical effects of GHRH in a subset of participants from the parent trial. DESIGN: Randomized, double-blind, placebo-controlled substudy of a larger trial. SETTING: Clinical research unit at the University of Washington School of Medicine. PARTICIPANTS: Thirty adults (17 with mild cognitive impairment [MCI]), ranging in age from 55 to 87 years, were enrolled and successfully completed the study. INTERVENTIONS: Participants self-administered daily subcutaneous injections of tesamorelin (Theratechnologies Inc), a stabilized analogue of human GHRH (1 mg/d), or placebo 30 minutes before bedtime for 20 weeks. At baseline and weeks 10 and 20, participants underwent brain magnetic resonance imaging and spectroscopy protocols and cognitive testing and provided blood samples after fasting. Participants also underwent glucose tolerance tests before and after intervention. MAIN OUTCOMES AND MEASURES: Brain levels of glutamate, inhibitory transmitters γ-aminobutyric acid (GABA) and N-acetylaspartylglutamate (NAAG), and myo-inositol (MI), an osmolyte linked to Alzheimer disease in humans, were measured in three 2 × 2 × 2-cm3 left-sided brain regions (dorsolateral frontal, posterior cingulate, and posterior parietal). Glutamate, GABA, and MI levels were expressed as ratios to creatine plus phosphocreatine, and NAAG was expressed as a ratio to N-acetylaspartate. RESULTS: After 20 weeks of GHRH administration, GABA levels were increased in all brain regions (P < .04), NAAG levels were increased (P = .03) in the dorsolateral frontal cortex, and MI levels were decreased in the posterior cingulate (P = .002). These effects were similar in adults with MCI and older adults with normal cognitive function. No changes in the brain levels of glutamate were observed. In the posterior cingulate, treatment-related changes in serum insulin-like growth factor 1 were positively correlated with changes in GABA (r = 0.47; P = .001) and tended to be negatively correlated with MI (r = -0.34; P = .06). Consistent with the results of the parent trial, a favorable treatment effect on cognition was observed in substudy participants (P = .03). No significant associations were observed between treatment-related changes in neurochemical and cognitive outcomes. Glucose homeostasis in the periphery was not reliably affected by GHRH administration and did not account for treatment neurochemical effects. CONCLUSIONS: Twenty weeks of GHRH administration increased GABA levels in all 3 brain regions, increased NAAG levels in the frontal cortex, and decreased MI levels in the posterior cingulate. To our knowledge, this is the first evidence that 20 weeks of somatotropic supplementation modulates inhibitory neurotransmitter and brain metabolite levels in a clinical trial, and it provides preliminary support for one possible mechanism to explain favorable GHRH effects on cognition in adults with MCI and in healthy older adults. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00257712.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/metabolismo , Hormona Liberadora de Hormona del Crecimiento/administración & dosificación , Ácido gamma-Aminobutírico/biosíntesis , Anciano , Anciano de 80 o más Años , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Química Encefálica/efectos de los fármacos , Disfunción Cognitiva/diagnóstico , Método Doble Ciego , Femenino , Lóbulo Frontal/metabolismo , Hormona Liberadora de Hormona del Crecimiento/análogos & derivados , Hormona Liberadora de Hormona del Crecimiento/fisiología , Giro del Cíngulo/metabolismo , Humanos , Inyecciones Subcutáneas , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad
15.
Endocrinology ; 154(4): 1624-35, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417421

RESUMEN

GHRH stimulates GH synthesis and release from the pituitary and exerts direct effects in extrapituitary tissues. We have previously shown that pretreatment with GHRH reduces cardiomyocyte apoptosis and improves heart function in isolated rat hearts subjected to ischemia/reperfusion (I/R). Here, we determined whether GHRH given at reperfusion reduces myocardial reperfusion injury and investigated the molecular mechanisms involved in GHRH effects. Isolated rat hearts subjected to I/R were treated at the onset of reperfusion with: 1) GHRH; 2) GHRH+GHRH antagonist JV-1-36; 3) GHRH+mitochondrial ATP-dependent potassium channel inhibitor 5-hydroxydecanoate; 4) GHRH+mitochondrial permeability transition pore opener atractyloside; 5) GHRH+ phosphoinositide 3-kinase/Akt inhibitor Wortmannin (WM); and 6) GHRH+signal transducer and activator of transcription-3 inhibitor tyrphostin-AG490 (AG490). GHRH reduced infarct size at the end of reperfusion and reverted contractility dysfunction in I/R hearts. These effects were inhibited by either JV-1-36, 5-hydroxydecanoate, atractylosid, WM, or AG490. Western blot analysis on left ventricles showed GHRH-induced phosphorylation of either the reperfusion injury salvage kinases (RISK), phosphoinositide 3-kinase/Akt, ERK1/2, and glycogen synthase kinase-3ß or signal transducer and activator of transcription-3, as part of the survivor activating factor enhancement (SAFE) pathway. GHRH-induced activation of RISK and SAFE pathways was blocked by JV-1-36, WM, and AG490. Furthermore, GHRH increased the phosphorylation of endothelial nitric oxide synthase and AMP-activated protein kinase and preserved postischemic nicotinamide adenine dinucleotide (NAD(+)) levels. These results suggest that GHRH protects the heart from I/R injury through receptor-mediated mechanisms, leading to activation of RISK and SAFE pathways, which converge on mitochondria and possibly on AMP-activated protein kinase.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Animales , Técnicas In Vitro , Masculino , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal
16.
Endocr Dev ; 23: 109-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23182825

RESUMEN

Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.


Asunto(s)
Enanismo Hipofisario/genética , Enanismo Hipofisario/terapia , Hormona de Crecimiento Humana/genética , Animales , Terapia Genética/métodos , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/fisiología , Terapia de Reemplazo de Hormonas/métodos , Hormona de Crecimiento Humana/administración & dosificación , Hormona de Crecimiento Humana/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Interferencia de ARN/fisiología , Empalme del ARN/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico
17.
Methods Enzymol ; 514: 3-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22975043

RESUMEN

The most important initial historical time points in the development of the enlarging ghrelin system were 1973, 1976, 1982, 1984, 1990, 1996, 1998, and 1999. At these respective times, the following occurred sequentially: isolation of somatostatin, discovery of unnatural growth-hormone-releasing peptides (GHRPs), isolation of growth-hormone-releasing hormone (GHRH), hypothesis of a new natural GHRP different from GHRH, GHRP+GHRH synergism in humans, discovery of the growth hormone secretagogue GHS/GHRP receptor, cloning of the receptor, and finally, isolation and identification of the new natural endogenous GHRP ghrelin. To understand the pharmacology and probably also the physiological regulation of growth hormone (GH) secretion, an important finding was that GHRP increased pulsatile GH secretion in children as well as normal younger and older men and women. This requires endogenous GHRH secretion, even though GHRP alone substantially releases GH from the pituitary in vitro without the addition of GHRH. Unnatural GHRP gave rise to natural GHRP ghrelin because of many talented researchers worldwide. GHRP was first envisioned to be an analog of GHRH but, from comparison of the activity of GHRH and GHRPs between 1982 and1984, it was hypothesized to reflect the activity of a new hormone regulator of GH secretion yet to be isolated and identified. Intravenous bolus GHRP releases more GH than GHRH in humans, but the reverse occurs in vitro. GHRPs are pleiotropic peptides with major effects on GH, nutrition, and metabolism, especially as an additional hormone in combination with GHRH as a new regulator of pulsatile GH secretion. The first indication of pleiotropism was an increase of food intake by GHRP. A major reason for the prolonged initial interest in the GHRPs has been its similar, yet different and complementary, action with GHRH on GH regulation and secretion. Particularly noteworthy is the variable chemistry of the GHRPs. They consist of three major chemical classes, including peptides, partial peptides, and nonpeptides, and all probably act via the same receptor and cellular mechanisms. Generally, most GHRPs have been active by all routes of administration, intravenously (iv), subcutaneously (sc), orally, intranasally, and intracerebroventricularly (icv), which supports their possible broad future clinical utility. From evolutionary studies starting with the zebrafish, the natural receptor and hormone have been present for hundreds of years, underscoring the fundamental evolutionary and functional importance of the ghrelin system. GHRPs were well established to act directly on both the hypothalamus and pituitary several years before the GHS receptor assay (Howard et al., 1996; Smith et al., 1996; Van der Ploeg et al., 1998). Finally, the ghrelin chemical isolation and identification was accomplished surprisingly from the stomach, which is the major site but not the only site, for example, the hypothalamus (Bowers, 2005; Kojima et al., 1999; Sato et al., 2005). Ghrelin was isolated and identified by Kojima and Kangawa et al. in 1999. A primary action of GHRPs continues to concern GH secretion and regulation, but increasingly this has included direct and indirect effects on nutrition and metabolism as well as a variety of other actions which may be pharmacological and/or physiological. Possible continuing and expanding roles of this new hormonal receptor include the central nervous system as well as the cardiovascular, renal, gastrointestinal, pancreatic, immunological, and anti-inflammatory systems. Our basic and clinical studies have mainly involved effects on GH regulation and secretion and this relationship to metabolism. So far in our studies, the actions of GHRPs and ghrelin on GH secretion and regulation in rats and probably in humans have generally been the same. A current objective is the incorporation of ghrelin into the diffuse endocrine hormonal system especially via GH.


Asunto(s)
Ghrelina/historia , Hormona Liberadora de Hormona del Crecimiento/fisiología , Receptores de Ghrelina/fisiología , Animales , Bioensayo/métodos , Sinergismo Farmacológico , Ingestión de Alimentos/efectos de los fármacos , Ghrelina/administración & dosificación , Ghrelina/metabolismo , Ghrelina/fisiología , Hormona Liberadora de Hormona del Crecimiento/administración & dosificación , Hormona Liberadora de Hormona del Crecimiento/farmacología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Infusiones Subcutáneas/métodos , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacología , Oligopéptidos/fisiología
18.
Peptides ; 37(1): 63-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22819774

RESUMEN

Lung cancers which show increased vascularization and high microvessel density are considered highly metastatic and with poor prognosis. Growth hormone releasing hormone (GHRH) antagonists are anticancer agents without adverse events in lung cancer tumor models. In the present study we investigated the in vitro effect of GHRH antagonist, MZ-5-156, on focal adhesion kinase (FAK) activity, on the expression of MMP-2 and MMP-9 metalloproteinases, as well as on vascular endothelial growth factor (VEGF) levels in A549 non-small cell lung (NSCLC) cancer cells and H727 bronchial carcinoid cells. We demonstrate for the first time that GHRH antagonist, MZ-5-156, inhibits FAK signaling in lung cancer cells and decreases the expression of additional factors involved in angiogenesis and invasion. In contrast, GHRH itself counteracted these effects. Our study contributes to the further understanding of the processes which govern the mechanism of action of GHRH and its antagonists in cancers.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Sermorelina/análogos & derivados , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/fisiología , Humanos , Neoplasias Pulmonares , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sermorelina/farmacología , Factor A de Crecimiento Endotelial Vascular/genética
19.
Gen Comp Endocrinol ; 176(3): 361-6, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22333212

RESUMEN

The neural retina is an extrapituitary site of growth hormone (GH) production and an autocrine or paracrine site of retinal GH action. Retinal GH is released from retinal tissue and may be secreted into the vitreous. Ontogenetic changes in the abundance of retinal GH during embryogenesis indicate that the amount of GH released may be regulated. The presence of pituitary GH secretagogues (GH-releasing hormone, GHRH; thyrotropin-releasing hormone, TRH; and ghrelin) and pituitary GH inhibitors (somatostatin, SRIF and insulin-like growth factor, IGF-1) within the neural retina may indicate the involvement of these factors in retinal GH release. This possibility is supported by the finding that GHRH is colocalized with GH in chick retinal ganglion cells (RGCs) and in immortalized cells (QNRD) derived from quail neuroretinal cells and by the induction of GH mRNA in incubated QNRD cells. In summary, these results provide evidence for the autocrine or paracrine regulation of retinal GH release in the ganglion cells of the embryonic chick retina.


Asunto(s)
Hormona del Crecimiento/fisiología , Retina/embriología , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Ghrelina/fisiología , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Receptores de Somatostatina/fisiología , Retina/citología , Retina/metabolismo , Hormona Liberadora de Tirotropina/fisiología
20.
Res Vet Sci ; 92(2): 243-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21353268

RESUMEN

Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and stimulates growth hormone (GH) released from the pituitary. Mutations detected in GHRH gene showed associations with animal production traits. The purpose of this study was to investigate the association of the GHRH gene with growth traits in Chinese native cattle. PCR-SSCP and sequencing were used to detect mutations of the GHRH gene in this study. One novel mutation 4251nt (C>T) was found and the frequencies of C allele were 0.8778 and 0.8476 for Qinchuan and Nanyang cattle, respectively. Body weight with the CT genotype was significantly higher (P<0.05 or P<0.01) than those with CC genotype for different growth periods (6, 12, 18, and 24 months old) in Nanyang cattle. Our findings suggested that polymorphism in bovine GHRH might be one of the important genetic factors to influence body weight.


Asunto(s)
Bovinos/genética , Hormona Liberadora de Hormona del Crecimiento/genética , Animales , Bovinos/crecimiento & desarrollo , China , Frecuencia de los Genes/genética , Estudios de Asociación Genética/veterinaria , Genotipo , Hormona Liberadora de Hormona del Crecimiento/fisiología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo Genético/genética , Polimorfismo Genético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...