Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.468
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892044

RESUMEN

Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Restricción Calórica , Ritmo Circadiano , Corticosterona , Ratas Wistar , Hormona Liberadora de Tirotropina , Animales , Ansiedad/metabolismo , Ratas , Masculino , Amígdala del Cerebelo/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/genética , Restricción Calórica/métodos , Corticosterona/sangre , Regulación hacia Abajo , Conducta Alimentaria , Ayuno , Ingestión de Alimentos , Peso Corporal
2.
Pituitary ; 27(3): 277-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700812

RESUMEN

PURPOSE: We aimed to investigate the prevalence and the diagnostic criteria of hypoprolactinemia in patients with panhypopituitarism and the effects of hypoprolactinemia on depression and sexual functions. MATERIALS AND METHODS: Forty-eight patients with panhypopituitarism and 20 healthy volunteers were included. Basal hormone levels were measured and a TRH stimulation test was performed. For the evaluation of sexual functions, questionnaries of Female Sexual Functional Index (FSFI) for females and International Erectile Functional Index for males were performed to the subjects. Depressive symptoms were evaluated by Beck Depression Envontory score (BDI-II). RESULTS: The peak PRL response to TRH stimulation test at 5th percentile in the control group was 18.6 ng/ml in males and 41.6 ng/ml in females and accepted as the cut-offs for sufficient response of PRL. Prolactin was insufficient in 42(87.5%) patients. A basal PRL level of ≤ 5.7 ng/ml in males and 7.11 ng/ml in females was 100% specific in predicting an inadequate response to TRH stimulation test with 80% and 70% sensitivity respectively. A basal PRL level of ≥ 8.5 ng/dl in males was 100% specific and 76% sensitive, and in females a level of ≥ 15.2 ng/dl was 96% specific and 66% sensitive in predicting an adequate response to TRH. PRL deficient patients with panhypopituitarism had higher depression scores compared to the controls, lower sexual function scores in males. CONCLUSION: PRL deficiency is prevalent among individuals with panhypopituitarism, with the potential to result in elevated depression scores in both sexes and impaired sexual functions in males. A basal PRL level seems to be sufficient for the diagnosis of hypoprolactinemia in routine clinical practice.


Asunto(s)
Depresión , Hipopituitarismo , Prolactina , Humanos , Masculino , Hipopituitarismo/diagnóstico , Hipopituitarismo/sangre , Hipopituitarismo/epidemiología , Femenino , Prolactina/sangre , Adulto , Depresión/epidemiología , Depresión/sangre , Depresión/diagnóstico , Prevalencia , Persona de Mediana Edad , Hormona Liberadora de Tirotropina , Estudios de Casos y Controles , Adulto Joven
3.
Peptides ; 175: 171181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423212

RESUMEN

Thyrotropin-releasing hormone (TRH) acts centrally to exert pleiotropic actions independently from its endocrine function, including antinociceptive effects against somatic pain in rodents. Whether exogenous or endogenous activation of TRH signaling in the brain modulates visceral pain is unknown. Adult male Sprague-Dawley rats received an intracerebroventricular (ICV) injection of the stable TRH analog, RX-77368 (10, 30 and 100 ng/rat) or saline (5 µl) or were semi-restrained and exposed to cold (4°C) for 45 min. The visceromotor response (VMR) to graded phasic colorectal distensions (CRD) was monitored using non-invasive intracolonic pressure manometry. Naloxone (1 mg/kg) was injected subcutaneously 10 min before ICV RX-77368 or saline. Fecal pellet output was monitored for 1 h after ICV injection. RX-77368 ICV (10, 30 and 100 ng/rat) reduced significantly the VMR by 56.7%, 67.1% and 81.1% at 40 mmHg and by 30.3%, 58.9% and 87.4% at 60 mmHg respectively vs ICV saline. Naloxone reduced RX-77368 (30 and 100 ng, ICV) analgesic response by 51% and 28% at 40 mmHg and by 30% and 33% at 60 mmHg respectively, but had no effect per se. The visceral analgesia was mimicked by the acute exposure to cold. At the doses of 30 and 100 ng, ICV RX-77368 induced defecation within 30 min. These data established the antinociceptive action of RX-77368 injected ICV in a model of visceral pain induced by colonic distension through recruitment of both opioid and non-opioid dependent mechanisms.


Asunto(s)
Neoplasias Colorrectales , Ácido Pirrolidona Carboxílico/análogos & derivados , Hormona Liberadora de Tirotropina/análogos & derivados , Dolor Visceral , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Dolor Visceral/tratamiento farmacológico , Analgésicos/farmacología , Naloxona/farmacología
4.
Equine Vet J ; 56(2): 291-298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37649416

RESUMEN

BACKGROUND: The thyrotropin-releasing hormone (TRH) stimulation test is used to diagnose pituitary pars intermedia dysfunction (PPID) using 10- or 30-min protocols. Imprecise sampling time for the 10-min protocol can lead to misdiagnoses. OBJECTIVES: To determine the effect of imprecise sampling time for the 30-min protocol of the TRH stimulation test. STUDY DESIGN: In vivo experiment. METHODS: Plasma immunoreactive adrenocorticotropin (ACTH) concentrations were measured 9, 10, 11, 29, 30 and 31 min after intravenous administration of 1 mg of TRH in 15 control and 12 PPID horses. Differences in ACTH concentrations between sampling times, variability in ACTH concentrations between protocols, and diagnostic classification of PPID were assessed using Friedman's test, Bland-Altman plots, and Fisher's exact test, respectively, with 95% confidence intervals reported and significance set at p < 0.05. RESULTS: Imprecise sampling time resulted in variable ACTH concentrations, but significant differences in absolute ACTH concentrations were not detected for imprecise sampling within each protocol or between protocols. Imprecise sampling changed PPID diagnostic classification for 3/27 (11 [4-28] %) horses for both protocols. Using the 30-min protocol as a reference, 1/12 (8 [1-35] %) horses returned a negative test result and 5/12 (42 [19-68] %) horses returned equivocal test results that would be considered positive in practice due to the presence of supportive clinical signs. MAIN LIMITATIONS: Limited sample size and inter-horse variability reduced the ability to detect small but potentially relevant differences. CONCLUSIONS: Overall, the impact of imprecise sampling was not significantly different between the 10- and 30-min TRH stimulation test protocols. However, diagnostic classification for PPID would have varied between the 10- and 30-min protocols in this population, if clinical signs had been ignored. Precise timing during TRH stimulation tests and contextual interpretation of ACTH concentrations remain fundamental for the diagnosis of PPID.


Asunto(s)
Enfermedades de los Caballos , Enfermedades de la Hipófisis , Adenohipófisis Porción Intermedia , Caballos , Animales , Hormona Liberadora de Tirotropina , Enfermedades de la Hipófisis/diagnóstico , Enfermedades de la Hipófisis/veterinaria , Hormona Adrenocorticotrópica , Administración Intravenosa/veterinaria , Enfermedades de los Caballos/diagnóstico
5.
J Vet Diagn Invest ; 36(1): 56-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37968868

RESUMEN

Thyrotropin-releasing hormone (TRH) stimulation can be used as a test of thyroid function and pituitary thyrotropin (thyroid-stimulating hormone, TSH) reserve, but optimal stimulation testing protocols in cats are unreported. We randomly divided 6 healthy young adult cats into 3 groups of 2 and administered 3 different intravenous doses of TRH (0.01, 0.05, 0.1 mg/kg) at weekly intervals in our crossover study. Serum TSH and thyroxine (T4) concentrations were measured using chemiluminescent immunoassay before, and at 30 and 60 min after, TRH administration. All cats were monitored for 4 h post-TRH administration for side effects. All 3 TRH doses induced significant TSH (0.01 mg/kg, p = 0.001; 0.05 mg/kg, p = 0.002; 0.1 mg/kg, p = 0.006) and total T4 (0.01 mg/kg, p = 0.008; 0.05 mg/kg, p = 0.006; 0.1 mg/kg, p = 0.001) responses. Lower TRH doses (0.01 and 0.05 mg/kg) caused fewer side effects (1 of 6 cats) than did the highest dose (3 of 6 cats), and may be safer in cats than the previously reported higher dose (0.1 mg/kg) of TRH. Our results do not support the use of maropitant to prevent side effects of a TRH stimulation test in cats.


Asunto(s)
Hormona Liberadora de Tirotropina , Tirotropina , Gatos , Animales , Hormona Liberadora de Tirotropina/farmacología , Hormona Liberadora de Tirotropina/fisiología , Tiroxina , Estudios Cruzados , Triyodotironina
6.
Thyroid ; 34(2): 252-260, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062754

RESUMEN

Background: Glucagon-like peptide 1 (GLP-1) is involved in the regulation of energy and glucose homeostasis. As GLP-1 has similar effects on the energy homeostasis as the hypophysiotropic thyrotropin-releasing hormone (TRH) neurons that regulate the hypothalamic-pituitary-thyroid (HPT) axis, we raised the possibility that the TRH neurons are involved in the mediation of the effects of GLP-1. Therefore, the relationship and interaction of the GLP-1 system and the TRH neurons of the hypothalamic paraventricular nucleus (PVN) were studied. Methods: To examine the anatomical and functional relationship of TRH neurons and the GLP-1 system in the PVN, immunocytochemistry, in situ hybridization, in vitro patch-clamp electrophysiology, metabolic phenotyping, and explant experiments were performed. Results: Our data demonstrate that the TRH neurons of the PVN are innervated by GLP-1 producing neurons and express the GLP-1 receptor (GLP-1R). However, not only do the GLP-1-innervated TRH neurons express GLP-1R but the receptor is also present in the axons of the hypophysiotropic TRH neurons in the blood-brain barrier free median eminence (ME) suggesting that peripherally derived GLP-1 may also influence the TRH neurons. In vitro, GLP-1 increased the firing rate of TRH neurons and depolarized them. In addition, GLP-1 directly stimulated the GABAergic input of a population of TRH neurons. Furthermore, GLP-1 inhibited the release of TRH from the hypophysiotropic axons in the ME. In vivo, peripheral GLP-1R agonist administration markedly inhibited the food intake and the energy expenditure, but had no effect on the TRH expression in the PVN and resulted in lower circulating free T4 levels. Conclusions: Our results indicate that GLP-1R activation has a direct stimulatory effect on TRH neurons in the PVN, but the activation of GLP-1R may also inhibit TRH neurons by facilitating their inhibitory inputs or by inhibiting the axon terminals of these cells in the ME. The innervation of TRH neurons by GLP-1 neurons suggests that TRH neurons might be influenced by both circulating GLP-1 and by GLP-1 neurons of the nucleus tractus solitarii. The lack of GLP-1R agonist-induced regulation of TRH neurons in vivo suggests that the HPT axis does not mediate the GLP-1R agonist-induced weight loss.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Hormona Liberadora de Tirotropina , Ratones , Masculino , Animales , Hormona Liberadora de Tirotropina/metabolismo , Neuronas/metabolismo , Axones/metabolismo , Núcleo Hipotalámico Paraventricular , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología
7.
Equine Vet J ; 56(2): 342-351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38010866

RESUMEN

BACKGROUND: The basal (bACTH) and post-thyrotropin-releasing hormone stimulation concentration of adrenocorticotropin (pACTH) are recommended for diagnosis of pituitary pars intermedia dysfunction (PPID). Many factors influence bACTH (e.g., disease, age, month) and some affect the results only in autumn (e.g., breed, colour, sex). There are discrepancies about the impact of feeding on b/pACTH. OBJECTIVES: To determine whether feeding, month, age, breed, colour, sex and body condition score affect b/pACTH. STUDY DESIGN: Prospective crossover. METHODS: Sixty-one animals were divided into groups: healthy, PPID, treated-PPID. The b/pACTH was measured three times (1 mg protirelin; blood collection after 10 min; mid-November to mid-July) after different feedings: fasting, hay, hay + grain. Friedman's test was applied to evaluate the influence of feeding on b/pACTH and linear mixed model to evaluate impact of further factors. RESULTS: The b/pACTH was not significantly affected by feeding (p = 0.7/0.5). The bACTH was lowest in healthy (29.3 pg/mL, CI 9-49.5 pg/mL) and highest in PPID-group (58.9 pg/mL, CI 39.7-78.1 pg/mL). The pACTH was significantly lower in healthy (396.7 pg/mL, CI 283.2-510.1 pg/mL) compared to PPID (588.4 pg/mL, CI 480.7-696.2 pg/mL) and treated-PPID group (683.1 pg/mL, CI 585.9-780.4 pg/mL), highest in July (881.2 pg/mL, CI 626.3-1136.3 pg/mL) and higher in grey (723.5 pg/mL, CI 577.5-869.4 pg/mL) than other colours (338.7 pg/mL, CI 324.8-452.5 pg/mL). The size of effect for those variables was >0.5. MAIN LIMITATIONS: Small number of animals, subsequent bACTH measurements were significantly lower in each horse. CONCLUSIONS: There was no evidence that feeding influences the b/pACTH. There was evidence that pergolide affects the bACTH but it had little effect on pACTH. Further investigation of the impact of month and coat colour on b/pACTH is warranted to better interpret the results.


Asunto(s)
Enfermedades de los Caballos , Enfermedades de la Hipófisis , Adenohipófisis Porción Intermedia , Animales , Hormona Adrenocorticotrópica/metabolismo , Enfermedades de los Caballos/diagnóstico , Caballos , Enfermedades de la Hipófisis/veterinaria , Estudios Prospectivos , Hormona Liberadora de Tirotropina/farmacología
8.
Biomed Pharmacother ; 168: 115830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931515

RESUMEN

Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for ß-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/ß-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of ß-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of ß-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.


Asunto(s)
Receptores de Hormona Liberadora de Tirotropina , beta Catenina , Ciclo Celular , Fosfoproteínas , Receptores de Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Animales , Ratas
9.
Vet J ; 300-302: 106035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802466

RESUMEN

Pituitary pars intermedia dysfunction (PPID) is an age-related neurodegenerative disorder, affecting >20 % of older horses. There is a need for improved endocrine tests for early disease detection, and the thyrotropin-releasing hormone (TRH) stimulation test has been recommended for diagnosis of early or mild cases. However, it is currently not recommended for year-round use due to marked seasonal variability. The aims of this cohort study were to evaluate effects of month and season on adrenocorticotropic hormone (ACTH) responses to TRH stimulation and to derive monthly cut-offs for PPID diagnosis. Sixty-three horses were assigned to control (n = 17), subclinical PPID (n = 21) and clinical PPID (n = 25) groups, based on a composite reference standard that combined clinical history and examination findings with endocrine test results. TRH stimulation tests were performed monthly for a 12-month period. Circannual changes were evaluated with one- and two-way repeated-measures analysis of variance and receiver operating characteristic curve analysis was used to derive cut-off values for basal and TRH-stimulated ACTH. TRH-stimulated ACTH concentrations were lowest in February-May and highest in August-October. Specificity of both basal and 30 min post-TRH ACTH was generally higher than sensitivity, and TRH stimulation had improved diagnostic accuracy compared to basal ACTH, although its sensitivity was not significantly greater year-round. TRH stimulation tests yielded considerably more positive results than basal ACTH in the subclinical group, but few additional positive results in clinical PPID cases. There were large differences between cut-offs that maximised sensitivity or specificity for TRH-stimulated ACTH, highlighting the importance of considering clinical presentation alongside test results in diagnostic decision-making.


Asunto(s)
Enfermedades de los Caballos , Enfermedades de la Hipófisis , Adenohipófisis Porción Intermedia , Caballos , Animales , Hormona Adrenocorticotrópica/farmacología , Hormona Liberadora de Tirotropina/farmacología , Estaciones del Año , Estudios de Cohortes , Enfermedades de la Hipófisis/diagnóstico , Enfermedades de la Hipófisis/veterinaria , Adenohipófisis Porción Intermedia/metabolismo , Enfermedades de los Caballos/diagnóstico
10.
Front Endocrinol (Lausanne) ; 14: 1226887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37850100

RESUMEN

Objective: To evaluate the value of the thyrotropin-releasing hormone (TRH) test in the diagnosis of central hypothyroidism (CH) in patients with pituitary disease. Methods: Systematic evaluation of 359 TRH tests in patients with pituitary disease including measurements of thyroxine (T4), TBG-corrected T4 (T4corr), baseline TSH (TSH0) and relative or absolute TSH increase (TSHfold, TSHabsolute). Results: Patients diagnosed with CH (n=39) show comparable TSH0 (p-value 0.824) but lower T4corr (p-value <0.001) and lower TSH increase (p-value <0.001) compared to patients without CH. In 54% (42 of 78 cases) of patients with low T4corr, the CH diagnosis was rejected based on a high TSHfold. In these cases, a spontaneous increase and mean normalization in T4corr (from 62 to 73 nmol/L, p-value <0.001) was observed during the follow-up period (7.6 ± 5.0 years). Three of the 42 patients (7%) were started on replacement therapy due to spontaneous deterioration of thyroid function after 2.8 years. Patients diagnosed with CH reported significantly more symptoms of hypothyroidism (p-value 0.005), although, symptoms were reported in most patients with pituitary disease. The TRH test did not provide clinical relevant information in patients with normal T4 or patients awaiting pituitary surgery (78%, 281 of 359). There were only mild and reversible adverse effects related to the TRH test except for possibly one case (0.3%) experiencing a pituitary apoplexy. Conclusion: The TRH test could be reserved to patients with pituitary disease, low T4 levels without convincing signs of CH. Approximately 50% of patients with a slightly decreased T4 were considered to have normal pituitary thyroid function based on the TRH test results.


Asunto(s)
Hipotiroidismo , Enfermedades de la Hipófisis , Humanos , Hipertiroidismo/diagnóstico , Hipotiroidismo/diagnóstico , Enfermedades de la Hipófisis/diagnóstico , Tirotropina , Hormona Liberadora de Tirotropina/análisis , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/análisis , Tiroxina/metabolismo
11.
Vet J ; 300-302: 106036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37805159

RESUMEN

Equine pituitary pars intermedia dysfunction (PPID) is common in aged horses. The majority of horses respond well to treatment, but treatment is lifelong, meaning accurate diagnosis of PPID is important. Similar to any condition, there is no perfect laboratory test to diagnose PPID and accuracy is affected by the characteristics of the population in which the test is being evaluated. This review details the importance of consideration of clinical factors and diagnostic test accuracy. Basal adrenocorticotrophic hormone (ACTH) concentration is used most frequently in practice and has very good diagnostic accuracy when used in combination with clinical judgement and the correct application of diagnostic thresholds. The thyrotropin-releasing hormone stimulation test can be used in horses with equivocal test results following basal ACTH testing, or to evaluate subtle cases due to its improved accuracy.


Asunto(s)
Enfermedades de los Caballos , Enfermedades de la Hipófisis , Adenohipófisis Porción Intermedia , Caballos , Animales , Hormona Liberadora de Tirotropina , Adenohipófisis Porción Intermedia/metabolismo , Enfermedades de los Caballos/diagnóstico , Enfermedades de la Hipófisis/diagnóstico , Enfermedades de la Hipófisis/veterinaria , Hormona Adrenocorticotrópica
12.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446225

RESUMEN

Thyrotropin-releasing hormone (TRH) is a tripeptide that regulates the neuroendocrine thyroid axis. Moreover, its widespread brain distribution has indicated that it is a relevant neuromodulator of behaviors such as feeding, arousal, anxiety, and locomotion. Importantly, it is also a neurotrophic peptide, and thus may halt the development of neurodegenerative diseases and improve mood-related disorders. Its neuroprotective actions on those pathologies and behaviors have been limited due to its poor intestinal and blood-brain barrier permeability, and because it is rapidly degraded by a serum enzyme. As new strategies such as TRH intranasal delivery emerge, a renewed interest in the peptide has arisen. TRH analogs have proven to be safe in animals and humans, while not inducing alterations in thyroid hormones' levels. In this review, we integrate research from different approaches, aiming to demonstrate the therapeutic effects of TRH, and to summarize new efforts to prolong and facilitate the peptide's actions to improve symptoms and the progression of several pathologies.


Asunto(s)
Encéfalo , Hormona Liberadora de Tirotropina , Animales , Humanos , Hormona Liberadora de Tirotropina/uso terapéutico , Hormona Liberadora de Tirotropina/metabolismo , Encéfalo/metabolismo , Glándula Tiroides/metabolismo , Péptidos/metabolismo , Hormonas Tiroideas/metabolismo
13.
Sci Rep ; 13(1): 9225, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286697

RESUMEN

Hyperactivation of hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-thyroid (HPT) axis were found in acute high altitude challenge, but the role of gut microbiota and metabolites is unknown. We utilized adult male Sprague-Dawley rats at a simulated altitude of 5500 m for 3 days in a hypobaric-hypoxic chamber. ELISA and metabolomic analyses of serum and 16S rRNA and metabolomic analyses of fecal samples were then performed. Compared with the normoxic group, serum corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), corticosterone (CORT), and thyroxine (tT4) were increased in the hypoxia group, whereas thyrotropin-releasing hormone (TRH) was decreased. Bacteroides, Lactobacillus, Parabacteroides, Butyricimonas, SMB53, Akkermansia, Phascolarctobacterium, and Aerococcus were enriched in hypoxia group, whereas [Prevotella], Prevotella, Kaistobacter, Salinibacterium, and Vogesella were enriched in normoxic group. Metabolomic analysis indicated that acute hypoxia significantly affected fecal and serum lipid metabolism. In addition, we found five fecal metabolites may mediate the cross-talk between TRH, tT4, and CORT with [Prevotella], Kaistobacter, Parabacteroides, and Aerococcus, and 6 serum metabolites may mediate the effect of TRH and tT4 on [Prevotella] and Kaistobacter by causal mediation analysis. In conclusion, this study provides new evidence that key metabolites mediate the cross-talk between gut microbiota with HPA and HPT axis under acute hypobaric hypoxia challenge.


Asunto(s)
Microbioma Gastrointestinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Altitud , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Corticosterona , Hormona Liberadora de Tirotropina/farmacología , Hipoxia/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
14.
Endocr J ; 70(8): 805-814, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37211401

RESUMEN

The secretion of several hypothalamic peptide hormones is activated during the preovulatory period. Hypothalamic thyrotropin-releasing hormone (TRH) is one such hormone with reproductive and/or metabolic significance. However, it remains unclear whether thyroid-stimulating hormone (TSH)-producing thyrotrophs are produced during the preovulatory period. We previously found a transient increase in the expression of the nuclear receptor NR4A3, a well-known immediate early gene, in the proestrus afternoon in the anterior pituitary glands of rats. To investigate the relationship between TRH secretion and pituitary NR4A3 expression during proestrus, we used proestrus and thyroidectomized rats to identify NR4A3-expressing cells and examined the regulation of Nr4a3 gene expression via the hypothalamus-pituitary-thyroid (HPT) axis. The percentage of NR4A3-expressing cells increased in thyrotrophs at 14:00 h of proestrus. Incubation of rat primary pituitary cells with TRH transiently stimulated Nr4a3 expression. Thyroidectomy to attenuate the negative feedback effects led to increased serum TSH levels and Nr4a3 gene expression in the anterior pituitary, whereas thyroxine (T4) administration conversely suppressed Nr4a3 expression. Additionally, the administration of T4 or TRH antibodies significantly suppressed the increase in Nr4a3 expression at 14:00 h of proestrus. These results demonstrate that pituitary NR4A3 expression is regulated by the HPT axis, and that TRH stimulates thyrotrophs and induces NR4A3 expression during the proestrus afternoon. This suggests the potential involvement of NR4A3 in the regulation of the HPT axis during pre- and post-ovulatory periods.


Asunto(s)
Tirotrofos , Hormona Liberadora de Tirotropina , Femenino , Ratas , Animales , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Tirotrofos/metabolismo , Proestro , Tirotropina , Hipófisis/metabolismo , Tiroxina/metabolismo
15.
Dev Growth Differ ; 65(6): 321-336, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246964

RESUMEN

In this article, we review studies which have been conducted to investigate the hormonal influence on metamorphosis in bullfrog (Rana catesbeiana) and Japanese toad (Bufo japonicus) larvae, in addition to studies conducted on the hormonal and pheromonal control of reproductive behavior in red-bellied newts (Cynops pyrrhogaster). Metamorphosis was studied with an emphasis on the roles of prolactin (PRL) and thyrotropin (TSH). The release of PRL was shown to be regulated by thyrotropin-releasing hormone (TRH) and that of TSH was evidenced to be regulated by corticotropin-releasing factor. The significance of the fact that the neuropeptide that controls the secretion of TSH is different from those encountered in mammals is discussed in consideration of the observation that the release of TRH, which stimulates the release of PRL, is enhanced when the animals are subjected to a cold temperature. Findings that were made by using melanin-rich cells of Bufo embryos and larvae, such as the determination of the origin of the adenohypophyseal primordium, identification of the pancreatic chitinase, and involvement of the rostral preoptic recess organ as the hypothalamic inhibitory center of α-melanocyte-stimulating hormone (α-MSH) secretion, are mentioned in this article. In addition, the involvement of hormones in eliciting courtship behavior in male red-bellied newts and the discovery of the peptide sex pheromones and hormonal control of their secretion are also discussed in the present article.


Asunto(s)
Feromonas , Hormona Liberadora de Tirotropina , Animales , Masculino , Femenino , Hormona Liberadora de Tirotropina/farmacología , Tirotropina , Anfibios , Mamíferos
16.
Thyroid ; 33(7): 867-876, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166378

RESUMEN

Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRß) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRß in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRß signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.


Asunto(s)
Hormona Liberadora de Tirotropina , Tirotropina , Ratones , Animales , Hormona Liberadora de Tirotropina/metabolismo , Tirotropina/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Glándula Tiroides/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Hipotálamo , Hormonas Tiroideas/metabolismo , Núcleo Hipotalámico Paraventricular , Neuronas/metabolismo
17.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108197

RESUMEN

Casein kinase 1α (CK1α) is present in multiple cellular organelles and plays various roles in regulating neuroendocrine metabolism. Herein, we investigated the underlying function and mechanisms of CK1α-regulated thyrotropin (thyroid-stimulating hormone (TSH)) synthesis in a murine model. Immunohistochemistry and immunofluorescence staining were performed to detect CK1α expression in murine pituitary tissue and its localization to specific cell types. Tshb mRNA expression in anterior pituitary was detected using real-time and radioimmunoassay techniques after CK1α activity was promoted and inhibited in vivo and in vitro. Relationships among TRH/L-T4, CK1α, and TSH were analyzed with TRH and L-T4 treatment, as well as thyroidectomy, in vivo. In mice, CK1α was expressed at higher levels in the pituitary gland tissue than in the thyroid, adrenal gland, or liver. However, inhibiting endogenous CK1α activity in the anterior pituitary and primary pituitary cells significantly increased TSH expression and attenuated the inhibitory effect of L-T4 on TSH. In contrast, CK1α activation weakened TSH stimulation by thyrotropin-releasing hormone (TRH) by suppressing protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling. CK1α, as a negative regulator, mediates TRH and L-T4 upstream signaling by targeting PKC, thus affecting TSH expression and downregulating ERK1/2 phosphorylation and CREB transcriptional activity.


Asunto(s)
Caseína Quinasas , Quinasas MAP Reguladas por Señal Extracelular , Tirotropina , Animales , Ratones , Caseína Quinasas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipófisis/metabolismo , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/farmacología
18.
FASEB J ; 37(4): e22865, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934391

RESUMEN

Hypothyroidism exerts deleterious effects on immunity, but the precise role of the hypothalamic-pituitary-thyroid (HPT) axis in immunoregulatory and tolerogenic programs is barely understood. Here, we investigated the mechanisms underlying hypothyroid-related immunosuppression by examining the regulatory role of components of the HPT axis. We first analyzed lymphocyte activity in mice overexpressing the TRH gene (Tg-Trh). T cells from Tg-Trh showed increased proliferation than wild-type (WT) euthyroid mice in response to polyclonal activation. The release of Th1 pro-inflammatory cytokines was also increased in Tg-Trh and TSH levels correlated with T-cell proliferation. To gain further mechanistic insights into hypothyroidism-related immunosuppression, we evaluated T-cell subpopulations in lymphoid tissues of hypothyroid and control mice. No differences were observed in CD3/CD19 or CD4/CD8 ratios between these strains. However, the frequency of regulatory T cells (Tregs) was significantly increased in hypothyroid mice, and not in Tg-Trh mice. Accordingly, in vitro Tregs differentiation was more pronounced in naïve T cells isolated from hypothyroid mice. Since Tregs overexpress galectin-1 (Gal-1) and mice lacking this lectin (Lgals1-/- ) show reduced Treg function, we investigated the involvement of this immunoregulatory lectin in the control of Tregs in settings of hypothyroidism. Increased T lymphocyte reactivity and reduced frequency of Tregs were found in hypothyroid Lgals1-/- mice when compared to hypothyroid WT animals. This effect was rescued by the addition of recombinant Gal-1. Finally, increased expression of Gal-1 was found in Tregs purified from hypothyroid WT mice compared with their euthyroid counterpart. Thus, a substantial increase in the frequency and activity of Gal-1-expressing Tregs underlies immunosuppression associated with hypothyroid conditions, with critical implications in immunopathology, metabolic disorders, and cancer.


Asunto(s)
Hipotiroidismo , Tirotropina , Ratones , Animales , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/farmacología , Linfocitos T Reguladores/metabolismo , Galectina 1/genética , Hipotiroidismo/metabolismo , Terapia de Inmunosupresión
19.
Nutrients ; 15(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36904162

RESUMEN

Dietary regimens that are focused on diminishing total caloric intake and restricting palatable food ingestion are the most common strategies for weight control. However, restrictive diet therapies have low adherence rates in obese patients, particularly in stressed individuals. Moreover, food restriction downregulates the hypothalamic-pituitary-thyroid axis (HPT) function, hindering weight loss. Intermittent fasting (IF) has emerged as an option to treat obesity. We compared the effects of IF to an all-day feeding schedule on palatable diet (PD)-stress (S)-induced hyperphagia, HPT axis function, accumbal thyrotropin-releasing hormone (TRH), and dopamine D2 receptor expression in association with adipocyte size and PPARƔ coactivator 1α (PGC1α) and uncoupling protein 1 (UCP1) expression in stressed vs. non-stressed rats. After 5 weeks, S-PD rats showed an increased energy intake and adipocyte size, fewer beige cells, and HPT axis deceleration-associated low PGC1α and UCP1 expression, as well as decreased accumbal TRH and D2 expression. Interestingly, IF reversed those parameters to control values and increased the number of beige adipocytes, UCP1, and PGC1α mRNAs, which may favor a greater energy expenditure and a reduced body weight, even in stressed rats. Our results showed that IF modulated the limbic dopaminergic and TRHergic systems that regulate feeding and HPT axis function, which controls the metabolic rate, supporting this regimen as a suitable non-pharmacologic strategy to treat obesity, even in stressed individuals.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Glándula Tiroides , Ratas , Animales , Glándula Tiroides/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Ayuno Intermitente , Hormona Liberadora de Tirotropina , Peso Corporal , Obesidad/metabolismo , Ingestión de Alimentos
20.
Aging (Albany NY) ; 15(5): 1591-1602, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36897166

RESUMEN

BACKGROUND: Studies showed that thyroid function plays an important role in the pathology of Alzheimer's disease (AD). However, changes in brain thyroid hormone and related receptors in the early stage of AD were rarely reported. The aim of this study was to explore the relationship between the early stage of AD and local thyroid hormone and its receptors in the brain. METHODS: The animal model was established by stereotactic injection of okadaic acid (OA) into hippocampal region for the experiment, and 0.9% NS for the control. Blood sample from each mouse was collected and then the mice were sacrificed and the brain tissue was collected for detecting free triiodothyronine (FT3), free thyroid hormone (FT4), and thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH) and phosphorylated tau, amyloid-ß (Aß) and thyroid hormone receptors (THRs) in the hippocampus of the mice were detected as well. RESULTS: Enzyme-linked immunosorbent assay showed that compared with the control, FT3, FT4, TSH and TRH in brain were significantly increased in the experimental group; in the serum, FT4, TSH and TRH were increased, while FT3 had no change; western blot analysis indicated that the expression of THR α and ß in the hippocampus of the experimental group was significantly higher than that of the control. CONCLUSION: Based on the results of this study, a mouse AD model can be established successfully by injecting a small dose of OA into the hippocampus. We speculate that early AD brain and circulating thyroid dysfunction may be an early local and systemic stress repair response.


Asunto(s)
Enfermedad de Alzheimer , Glándula Tiroides , Ratones , Animales , Hormonas Tiroideas , Tirotropina , Hormona Liberadora de Tirotropina , Encéfalo , Tiroxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...