Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.752
Filtrar
1.
Chemosphere ; 355: 141876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570043

RESUMEN

Gestodene (GES) is widely used in human therapy and animal husbandry and is frequently detected in aquatic environments. Although GES adversely affects aquatic organisms at trace levels, its effects on the reproductive biology of fish remain inconclusive. In this study, female zebrafish (Danio rerio) were exposed to environmentally relevant levels of GES for the evaluation of the effects of GES on the reproductive system by using endpoints including gene expression, plasma steroid concentrations, histological and morphological analyses, copulatory behavior, and reproductive output. Adult female zebrafish exposed to environmentally relevant concentrations of GES (4.0, 40.2, and 372.7 ng/L) for 60 d demonstrated stagnant ovarian oocyte development, evidenced by an increase in the percentage of perinuclear and atretic oocytes and a decrease in the percentage of late vitellogenic oocytes. GES-exposed females were less attractive to males and had lower copulatory intimacy than females in control. Consequently, spawning (44.3-49.2 %) and egg fertilization rates (27.9-32.0 %) were decreased. The decreased survival of fertilized eggs and hatching rates were accompanied by increased malformations. These negative effects were associated with abnormal transcriptional levels of gonadal steroid hormones, which were regulated by genes (Hsd17ß3, Hsd11ß2, Hsd20ß, Cyp19a1a, and Cyp11b). Overall, our findings suggest that GES impairs the reproductive system of zebrafish, which may threaten population stability.


Asunto(s)
Norpregnenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Humanos , Femenino , Pez Cebra/metabolismo , Ovario , Hormonas Esteroides Gonadales/metabolismo , Reproducción , Contaminantes Químicos del Agua/metabolismo , Gónadas
2.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38574174

RESUMEN

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Asunto(s)
Andrógenos , Células Dendríticas , Inmunidad Innata , Linfocitos , Caracteres Sexuales , Piel , Femenino , Masculino , Andrógenos/metabolismo , Células Dendríticas/inmunología , Hormonas Esteroides Gonadales/metabolismo , Linfocitos/inmunología , Piel/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Microbiota
3.
J Integr Neurosci ; 23(4): 78, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682222

RESUMEN

BACKGROUND: Neurodegenerative diseases are a group of unexplained disorders of the central nervous system, and studies have shown that a large number of genetic and environmental factors are associated with these diseases. Since these diseases show significant gender differences in epidemiology, sex hormones are thought to be strongly associated with these diseases. In this study, we used Mendelian randomization to explore the causal relationship between sex hormones and the risk of developing neurodegenerative diseases. METHODS: We obtained genetic instrumental variables for sex hormones (sex hormone-binding globulin [SHBG], estradiol levels [EL], and bioavailable testosterone [BT]) separately through the Integrative Epidemiology Unit (IEU) database (https://gwas.mrcieu.ac.uk/). We analyzed the causal relationship of each with the risk of developing neurodegenerative diseases (Amyotrophic Lateral Sclerosis [ALS], Parkinson's disease [PD], and Alzheimer's disease [AD]) using inverse variance weighted (IVW) in Mendelian randomization. Data were then analyzed for sensitivity. RESULTS: BT was negatively associated with the risk of developing ALS (odds ratio [OR] = 0.794; 95% confidence interval [95% CI] = 0.672-0.938; p = 0.006). EL and SHBG were not associated with a risk for developing neurodegenerative diseases (ALS, PD, AD). CONCLUSIONS: Elevated BT is associated with a reduced risk of developing ALS. Further research is needed to investigate the underlying mechanisms of action for this correlation and how it can be used as a potential target of action to reduce the risk of developing ALS.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Enfermedades Neurodegenerativas , Globulina de Unión a Hormona Sexual , Humanos , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/genética , Globulina de Unión a Hormona Sexual/análisis , Globulina de Unión a Hormona Sexual/metabolismo , Testosterona/sangre , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Estradiol/sangre , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/metabolismo , Femenino , Masculino
4.
Nat Rev Cancer ; 24(5): 338-355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589557

RESUMEN

Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Femenino , Masculino , Inmunoterapia/métodos , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/inmunología , Caracteres Sexuales , Epigénesis Genética , Sexismo , Factores Sexuales
5.
Steroids ; 206: 109423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631602

RESUMEN

There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.


Asunto(s)
Enfermedades Cardiovasculares , Hormonas Esteroides Gonadales , Humanos , Enfermedades Cardiovasculares/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Femenino , Masculino , Factores de Riesgo , Caracteres Sexuales , Animales
6.
Anim Reprod Sci ; 264: 107452, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522133

RESUMEN

Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.


Asunto(s)
Citocinas , Prostaglandinas , Animales , Femenino , Embarazo , Porcinos/fisiología , Prostaglandinas/metabolismo , Citocinas/metabolismo , Citocinas/genética , Hormonas Esteroides Gonadales/metabolismo , Preñez/fisiología
7.
Poult Sci ; 103(5): 103589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471223

RESUMEN

Egg production is an economically important trait in poultry breeding and production. Follicular development was regulated by several hormones released and genes expressed in the granulosa cells, impacting the egg production and fecundity of hens. However, the molecular functions of these candidate genes that modulate these processes remain largely unknown. In the present study, bioinformatics analyses were performed to identify the candidate genes related to egg production in the ovarian tissue of White Leghorns with high egg production and Beijing You chicken with low egg production during sexual maturity and peak laying periods. The ovarian granulosa cells were used to assess the function of CYP21A1 by transfecting with CYP21A1-specific small interfering RNAs (siRNAs) and overexpression plasmids. We identified 514 differentially expressed genes (|Log2(fold change) | >1, P <0.05) between the 2 chicken breeds in both laying periods. Among these genes, CYP21A1, which is involved in the steroid hormone biosynthesis pathway was consistently upregulated in White Leghorns. Weighted gene co-expression network analysis (WGCNA) further suggested that CYP21A1 was a hub gene, which could positively respond to treatment with follicle stimulation hormone (FSH), affecting egg production. The interference of CYP21A1 significantly inhibited cell proliferation and promoted cell apoptosis. Overexpression of CYP21A1 promotes cell proliferation and inhibits cell apoptosis. Furthermore, the interference with CYP21A1 significantly downregulated the expression of STAR, CYP11A1, HSD3B1, and FSHR and also decreased the synthesis of progesterone (P4) and estradiol (E2) in granulosa cells. Overexpression of CYP21A1 increased the synthesis of P4 and estradiol E2 and the expression of steroid hormone synthesis-related genes in granulosa cells. Our findings provide new evidence for the biological role of CYP21A1 on granulosa cell proliferation, apoptosis, and steroid hormone synthesis, which lays the theoretical basis for improving egg production.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Células de la Granulosa , Animales , Femenino , Pollos/genética , Pollos/fisiología , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Perfilación de la Expresión Génica/veterinaria , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Ovario/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Hormonas Esteroides Gonadales/metabolismo , Transcriptoma , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiología
8.
Aquat Toxicol ; 270: 106899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492288

RESUMEN

Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 µg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Animales , Masculino , Pez Cebra/metabolismo , Triclosán/toxicidad , Triclosán/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estadios del Ciclo de Vida , Hormonas Esteroides Gonadales/metabolismo , Esteroides/metabolismo
9.
Gen Comp Endocrinol ; 351: 114482, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432348

RESUMEN

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Asunto(s)
Perciformes , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Maduración Sexual , Gónadas/metabolismo , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Peces/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Encéfalo/metabolismo , Expresión Génica
10.
Poult Sci ; 103(5): 103620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492249

RESUMEN

Chicken ovarian follicle development is regulated by complex and dynamic gene expression. Nuclear receptor 5A1 and 5A2 (NR5A1 and NR5A2, respectively) are key genes that regulate steroid hormone production and gonadal development in mammals; however, studies on follicular development in the chicken ovary are scarce. In this study, we investigated the functions of NR5A1 and NR5A2 on follicle development in chickens. The results showed that the expression of NR5A1 and NR5A2 was significantly higher in small yellow follicles and F5. Furthermore, the expression of NR5A1 and NR5A2 was significantly higher in follicular tissues of peak-laying hens (30 wk) than in follicular tissues of late-laying hens (60 wk), with high expression abundance in granulosa cells (GC). The overexpression of NR5A1 and NR5A2 significantly promoted proliferation and inhibited apoptosis of cultured GC; upregulated STAR, CYP11A1, and CYP19A1 expression and estradiol (E2) and progesterone (P4) synthesis in GC from preovulatory follicles (po-GC); and increased STAR, CYP11A1, and CYP19A1 promoter activities. In addition, follicle-stimulating hormone treatment significantly upregulated NR5A1 and NR5A2 expression in po-GC and significantly promoted FSHR, CYP11A1, and HSD3B1 expression in GC from pre-hierarchical follicles and po-GC. The core promoter region of NR5A1 was identified at the -1,095- to -483-bp and -2,054- to -1,536-bp regions from the translation start site (+1), and the core promoter region of NR5A2 was at -998 to -489 bp. Two single nucleotide polymorphisms (SNP) were identified in the core promoter region of the NR5A1 gene, which differed between high- and low-yielding chicken groups. Our study suggested that NR5A1 and NR5A2 promoted chicken follicle development by promoting GC proliferation and E2 and P4 hormone synthesis and inhibiting apoptosis. Moreover, we identified the promoter core region or functional site that regulates NR5A1 and NR5A2 expression.


Asunto(s)
Apoptosis , Proteínas Aviares , Proliferación Celular , Pollos , Células de la Granulosa , Folículo Ovárico , Animales , Femenino , Pollos/genética , Células de la Granulosa/fisiología , Células de la Granulosa/metabolismo , Folículo Ovárico/fisiología , Folículo Ovárico/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/biosíntesis
11.
Biochem Pharmacol ; 222: 116063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373593

RESUMEN

Steroid hormones play an important role in physiological processes. The classical pathway of steroid actions is mediated by nuclear receptors, which regulate genes to modify biological processes. Non-genomic pathways of steroid actions are also known, mediated by cell membrane-located seven transmembrane domain receptors. Sex steroids and glucocorticoids have several membrane receptors already identified to mediate their rapid actions. However, mineralocorticoids have no identified membrane receptors, although their rapid actions are also measurable. In non-vascular smooth muscles (bronchial, uterine, gastrointestinal, and urinary), the rapid actions of steroids are mediated through the modification of the intracellular Ca2+ level by various Ca-channels and the cAMP and IP3 system. The non-genomic action can be converted into a genomic one, suggesting that these distinct pathways may interconnect, resulting in convergence between them. Sex steroids mostly relax all the non-vascular smooth muscles, except androgens and progesterone, which contract colonic and urinary bladder smooth muscles, respectively. Corticosteroids also induce relaxation in bronchial and uterine tissues, but their actions on gastrointestinal and urinary bladder smooth muscles have not been investigated yet. Bile acids also contribute to the smooth muscle contractility. Although the therapeutic application of the rapid effects of steroid hormones and their analogues for smooth muscle contractility disorders seems remote, the actions and mechanism discovered so far are promising. Further research is needed to expand our knowledge in this field by using existing experience. One of the greatest challenges is to separate genomic and non-genomic effects, but model molecules are available to start this line of research.


Asunto(s)
Receptores de Esteroides , Esteroides , Esteroides/farmacología , Esteroides/fisiología , Hormonas Esteroides Gonadales/farmacología , Hormonas Esteroides Gonadales/metabolismo , Progesterona/farmacología , Progesterona/metabolismo , Glucocorticoides , Músculo Liso/metabolismo , Receptores de Esteroides/metabolismo
12.
Exp Clin Endocrinol Diabetes ; 132(5): 267-278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382644

RESUMEN

Diabetes mellitus is one of the most prevalent chronic diseases. Previous studies have shown differences in glucose metabolism between males and females. Moreover, difficulties in medication adherence have been reported in females with type 2 diabetes. These observations are believed to be caused by fluctuations in sex hormone concentrations during the menstrual cycle. Furthermore, gut microbiota is linked to female host metabolism and sex hormone production. Understanding the interactions between fluctuating hormone concentrations during the menstrual cycle, gut microbiota, and glucose metabolism in humans is significant because of the increasing prevalence of diabetes and the consequent need to expand preventive efforts. A literature search was performed to determine and summarize the existing evidence, deduce future research needs to maintain female health, and investigate the relationship between the physiological menstrual cycle and glucose metabolism. Studies from 1967 to 2020 have already examined the relationship between variations during the menstrual cycle and glucose metabolism in healthy female subjects using an oral-glucose tolerance test or intravenous glucose tolerance test. However, the overall number of studies is rather small and the results are contradictory, as some studies detected differences in glucose concentrations depending on the different cycle phases, whereas others did not. Some studies reported lower glucose levels in the follicular phase than in the luteal phase, whereas another study detected the opposite. Data on gut microbiota in relation to the menstrual cycle are limited. Conflicting results exist when examining the effect of hormonal contraceptives on the gut microbiota and changes in the course of the menstrual cycle. The results indicate that the menstrual cycle, especially fluctuating sex hormones, might impact the gut microbiota composition.The menstrual cycle may affect the gut microbiota composition and glucose metabolism. These results indicate that glucose tolerance may be the greatest in the follicular phase; however, further well-conducted studies are needed to support this assumption.


Asunto(s)
Microbioma Gastrointestinal , Hormonas Esteroides Gonadales , Ciclo Menstrual , Humanos , Microbioma Gastrointestinal/fisiología , Femenino , Ciclo Menstrual/fisiología , Ciclo Menstrual/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/sangre , Glucosa/metabolismo , Glucemia/metabolismo
13.
Exp Clin Transplant ; 22(Suppl 1): 281-284, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38385413

RESUMEN

OBJECTIVES: Our goal was to determine levels of sex hormones in men with type 1 diabetes mellitus and type 2 diabetes mellitus after autologous mesenchymal stem cell transplant. MATERIALS AND METHODS: We examined 10 male patients (32-56 years old) with type 1 diabetes mellitus and type 2 diabetes mellitus, whom we subsequently divided into 2 groups and examined. Group 1 comprised 5 male patients who received autologous mesenchymal stem cell transplant (cells were obtained from patient's iliac crest and cultured for 3-4 weeks) by intravenous infusion. Group 2 comprised 5 male patients (control group) who were on hypoglycemic tablet therapy or insulin therapy. The quantity of autologous mesenchymal stem cells infused was 95 × 106 to 97 × 106 cells. We analyzed levels of testosterone, luteinizing hormone, estradiol, and glycated hemoglobin in patients both before and 3 months after the autologous mesenchymal stem cell transplant procedure. RESULTS: In men with type 1 diabetes mellitus and type 2 diabetes mellitus, autologous mesenchymal stem cell transplant led to an increase in testosterone levels from 5.31 ± 2.12 to 6.33 ± 2.12 ng/mL (P = .82), a decrease in luteinizing hormone from 8.43 ± 1.25 to 5.94 ± 1.57 mIU/mL (P = .04), and a decrease in glycated hemoglobin from 9.45 ± 1.24% to 8.53 ± 1.08% (P = .25) after 3 months. The increase in testosterone in men with autologous mesenchymal stem cell transplant group of 6.33 ± 2.12 ng/mL was significant compared with men in the control group (3.9 ± 1.18 ng/mL; P = .01). CONCLUSIONS: Testosterone level increased and luteinizing hormone level decreased within 3 months after autologous mesenchymal stem cell transplant in men with diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Masculino , Adulto , Persona de Mediana Edad , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/cirugía , Diabetes Mellitus Tipo 2/diagnóstico , Hemoglobina Glucada , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Hormonas Esteroides Gonadales/metabolismo , Hormona Luteinizante/metabolismo , Células Madre Mesenquimatosas/metabolismo , Testosterona
14.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338678

RESUMEN

This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17ß-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.


Asunto(s)
Palaemonidae , Animales , Masculino , Palaemonidae/metabolismo , Semen/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Colesterol/metabolismo , Triglicéridos/metabolismo , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
15.
Ecotoxicol Environ Saf ; 270: 115920, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171105

RESUMEN

Phthalates (PEs) are widely used plasticizers in polymer products, and humans are increasingly exposed to them. This study was designed to investigate the alleviative effect of phytochemicals quercetin (Que) against male reproductive toxicity caused by the mixture of three commonly used PEs (MPEs), and further to explore the underlying mechanism. Forty-eight male SD rats were randomly and evenly divided into control group, Que group, MPEs group and MPEs+Que group (n = 12); The oral exposure doses of MPEs and Que were 450 mg/kg/d and 50 mg/kg/d, respectively. After 91 days of continuous intervention, compared with control group, the testes weight, epididymis weight, serum sex hormones, and anogenital distance were significantly decreased in MPEs group (P < 0.05); Testicular histopathological observation showed that all seminiferous tubules were atrophy, leydig cells were hyperplasia, spermatogenic cells growth were arrested in MPEs group. Ultrastructural observation of testicular germ cells showed that the edges of the nuclear membranes were indistinct, and the mitochondria were severely damaged with the cristae disrupted, decreased or even disappeared in MPEs group. Immunohistochemistry and Western blot analysis showed that testicular CYP11A1, CYP17A1 and 17ß-HSD were up-regulated, while StAR, PIWIL1 and PIWIL2 were down-regulated in MPEs group (P < 0.05); However, the alterations of these parameters were restored in MPEs+Que group. The results indicated MPEs disturbed steroid hormone metabolism, and caused male reproductive injuries; whereas, Que could inhibit MPEs' male reproductive toxicity, which might relate to the restored regulation of steroid hormone metabolism.


Asunto(s)
Ácidos Ftálicos , Quercetina , Testículo , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Ratas Sprague-Dawley , Hormonas Esteroides Gonadales/metabolismo , Esteroides/metabolismo , Testosterona , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacología
16.
Br J Pharmacol ; 181(7): 938-966, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37939796

RESUMEN

Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Humanos , Masculino , Femenino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/uso terapéutico , Estrógenos/metabolismo , Testosterona
17.
Fish Physiol Biochem ; 50(2): 449-461, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38079050

RESUMEN

To investigate the effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens (O. bidens), synthetic methyltestosterone (MT) and 17ß-estradiol (E2) were used for 28 days' treatment of 4-month-old O. bidens before the breeding season. Our results suggested that MT had a significant growth-promoting effect (P < 0.05), whereas E2 played an inhibitory role. On the body surface, the females in the MT group showed gray stripes, and the fish in other groups showed no obvious stripes. The males with MT treatment displayed brighter blue-green stripes compared to the CK and E2 groups. The histological analysis showed that the MT significantly promoted testes development in males, blocked oocyte development, and caused massive apoptosis in females, whereas the E2 group promoted ovarian development and inhibited testes development. Based on qRT-PCR analysis, in females, the expression of igf-1, dmrt1, and cyp19a1a genes revealed that E2 treatment resulted in down-regulation of igf-1 expression and up-regulation of cyp19a1a expression. In males, igf-1 and dmrt1 were significantly up-regulated after MT treatment, and E2 treatment led to down-regulation of igf-1. Therefore, this study demonstrates that MT and E2 play an important role in reversing the morphological sex characteristics of females and males.


Asunto(s)
Cipriniformes , Factor I del Crecimiento Similar a la Insulina , Masculino , Femenino , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Gónadas/metabolismo , Metiltestosterona/farmacología , Estradiol/farmacología , Estradiol/metabolismo , Diferenciación Sexual , Cipriniformes/metabolismo , Hormonas Esteroides Gonadales/metabolismo
18.
Physiol Genomics ; 56(2): 235-245, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047309

RESUMEN

Sex differences in allergic inflammation have been reported, but the mechanisms underlying these differences remain unknown. Contributions of both sex hormones and sex-related genes to these mechanisms have been previously suggested in clinical and animal studies. Here, Four-Core Genotypes (FCG) mouse model was used to study the inflammatory response to house dust mite (HDM) challenge and identify differentially expressed genes (DEGs) and regulatory pathways in lung tissue. Briefly, adult mice (8-10 wk old) of the FCG (XXM, XXF, XYM, XYF) were challenged intranasally with 25 µg of HDM or vehicle (PBS-control group) 5 days/wk for 5 wk (n = 3/10 group). At 72 h after the last exposure, we analyzed the eosinophils and neutrophils in the bronchoalveolar lavage (BAL) of FCG mice. We extracted lung tissue and determined DEGs using Templated Oligo-Sequencing (TempO-Seq). DEG analysis was performed using the DESeq2 package and gene enrichment analysis was done using Ingenuity Pathway Analysis. A total of 2,863 DEGs were identified in the FCG. Results revealed increased eosinophilia and neutrophilia in the HDM-treated group with the most significantly expressed genes in XYF phenotype and a predominant effect of female hormones vs. chromosomes. Regardless of the sex hormones, mice with female chromosomes had more downregulated genes in the HDM group but this was reversed in the control group. Interestingly, genes associated with inflammatory responses were overrepresented in the XXM and XYF genotypes treated with HDM. Sex hormones and chromosomes contribute to inflammatory responses to HDM challenge, with female hormones exerting a predominant effect mediated by inflammatory DEGs.NEW & NOTEWORTHY Gene expression profiling helps to provide deep insight into the global view of disease-related mechanisms and responses to therapy. Using the Four-Core Genotype mouse model, our findings revealed the influence of sex hormones and sex chromosomes in the gene expression of lungs exposed to an aeroallergen (House Dust Mite) and identified sex-specific pathways to better understand sex disparities associated with allergic airway inflammation.


Asunto(s)
Alérgenos , Pulmón , Femenino , Ratones , Masculino , Animales , Alérgenos/metabolismo , Pulmón/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Pyroglyphidae , Inflamación/genética , Inflamación/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Genotipo , Expresión Génica , Hormonas/metabolismo , Líquido del Lavado Bronquioalveolar
19.
Physiol Genomics ; 56(2): 194-220, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047313

RESUMEN

Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.NEW & NOTEWORTHY There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Masculino , Femenino , Células Endoteliales/metabolismo , Caracteres Sexuales , Hipertensión Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Proteómica , Hipoxia/metabolismo , Células Cultivadas , Endotelio/metabolismo , Perfilación de la Expresión Génica , Hormonas Esteroides Gonadales/metabolismo
20.
Life Sci ; 336: 122324, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042281

RESUMEN

As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.


Asunto(s)
Mitocondrias , Sarcopenia , Masculino , Humanos , Femenino , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/metabolismo , Sarcopenia/metabolismo , Atrofia Muscular/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Mitocondrias Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA