Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Hum Genet ; 140(1): 43-57, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33108537

RESUMEN

Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.


Asunto(s)
Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Teratozoospermia/genética , Hormonas Testiculares/genética , Estudios de Cohortes , Eliminación de Gen , Estudios de Asociación Genética/métodos , Pruebas Genéticas/métodos , Homocigoto , Humanos , Masculino , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Espermatozoides/anomalías , Secuenciación del Exoma/métodos
2.
J Cell Mol Med ; 22(10): 4863-4874, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30055035

RESUMEN

Gametogenetin (GGN) binding protein 2 (GGNBP2) is a zinc finger protein expressed abundantly in spermatocytes and spermatids. We previously discovered that Ggnbp2 resection caused metamorphotic defects during spermatid differentiation and resulted in an absence of mature spermatozoa in mice. However, whether GGNBP2 affects meiotic progression of spermatocytes remains to be established. In this study, flow cytometric analyses showed a decrease in haploid, while an increase in tetraploid spermatogenic cells in both 30- and 60-day-old Ggnbp2 knockout testes. In spread spermatocyte nuclei, Ggnbp2 loss increased DNA double-strand breaks (DSB), compromised DSB repair and reduced crossovers. Further investigations demonstrated that GGNBP2 co-immunoprecipitated with a testis-enriched protein GGN1. Immunofluorescent staining revealed that both GGNBP2 and GGN1 had the same subcellular localizations in spermatocyte, spermatid and spermatozoa. Ggnbp2 loss suppressed Ggn expression and nuclear accumulation. Furthermore, deletion of either Ggnbp2 or Ggn in GC-2spd cells inhibited their differentiation into haploid cells in vitro. Overexpression of Ggnbp2 in Ggnbp2 null but not in Ggn null GC-2spd cells partially rescued the defect coinciding with a restoration of Ggn expression. Together, these data suggest that GGNBP2, likely mediated by its interaction with GGN1, plays a role in DSB repair during meiotic progression of spermatocytes.


Asunto(s)
Proteínas Portadoras/genética , Meiosis/genética , Espermatogénesis/genética , Hormonas Testiculares/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Espermatocitos/crecimiento & desarrollo , Espermatocitos/metabolismo , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo
3.
Gene ; 652: 7-15, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29412153

RESUMEN

Bladder cancer has shown great challenge for people's life. Traditional therapeutics against bladder cancer including surgery could not bring much benefit for patients, particularly for the late stage patients. So it is necessary to keep in mind why and how bladder cancer cells survive in our body. In this study, we explored the function and the molecular mechanism of GGN gene in bladder cancer. GGN was shown to be expressed at a high level in bladder cancer tissues compared to the control and was associated with the unsatisfactory survival rate of patients. GGN was also expressed abundantly in bladder cancer cell lines such as T24, 5637 and BIU87. Then GGN was knocked down in 5637 cells and T24 cells at both RNA and protein level. In accordance, aberrant growth and proliferation were demonstrated in bladder cancer cells. The ability of migration and invasion of bladder cancer cells was also inhibited. The in vivo data further proved that the xenograft tumor growth was dramatically suppressed by GGN knockdown. Then we demonstrated that the level of IκB, bax and truncated caspase3 was upregulated after GGN was knocked down in 5637 cells. In contrast, expression level of NFκB, IKK, c-Myc, cyclin D1 and Bcl-2 was reduced. Further, the phosphorylation level of IκB was also downregulated. These data suggest that NFκB/caspase3-mediated apoptosis signaling was regulated by GGN. Conclusively, GGN played a tumor-promoting role in bladder cancer through regulation of NFκB/caspase3-mediated apoptosis signaling. This study provides a new clue for the treatment of patients with bladder cancer.


Asunto(s)
Caspasa 3/genética , Regulación Neoplásica de la Expresión Génica , FN-kappa B/genética , ARN Interferente Pequeño/genética , Hormonas Testiculares/genética , Neoplasias de la Vejiga Urinaria/terapia , Animales , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Hormonas Testiculares/antagonistas & inhibidores , Hormonas Testiculares/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
Mol Med Rep ; 9(3): 955-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366307

RESUMEN

The aim of the present study was to produce transgenic mice expressing tumor virus A (TVA) in the ovary under ovarian specific promoter 1 (OSP1) control. A transgenic mouse model was established in which TVA, an avian retroviral receptor gene driven by OSP1, was selectively expressed in the ovary. A recombinant plasmid containing TVA cDNA and an OSP1 promoter was constructed. The DNA fragment was repeatedly injected into male mouse testes at multiple sites. At 4­7, 7­10 and 10­13 weeks following the final injection, two DNA­injected male mice were mated with four wild­type female mice to produce transgenic mice. The transgenic positive rate in mouse F1 offspring was 39.69%. When the positive F1 individuals were mated with wild­type Imprinting Control Region mice (PxW) or with positive F1 individuals (PxP), the F2 individuals had a transgenic rate of 12.44%. The transgenic rates in the F1 offspring, produced following mating at the three time intervals, were 55.71 (39/70), 30.77 (4/13) and 18.75% (9/48), respectively. The transgenic rates of the F2 offspring decreased with the age of the F1 offspring, from 26.67% when PxP were mated at 6­8 weeks of age to 6.52% when PxW were mated at 5­6 months of age. The results indicate a high efficiency of gene transfer to F1 offspring using testis­mediated gene transfer (TMGT). The transgenic rate in the F2 offspring was lower than that in the F1 offspring. The results reveal that TMGT is suitable for creating transgenic animals among F1 offspring. Semi­quantitative reverse transcription-polymerase chain reaction results showed that TVA was expressed in the mice ovaries. The results demonstrate the importance of using the replication­competent avian sarcoma­leukosis virus long terminal repeat with a splice acceptor­TVA system in ovarian tumorigenesis research.


Asunto(s)
Técnicas de Transferencia de Gen , Virus Oncogénicos/genética , Regiones Promotoras Genéticas/genética , Hormonas Testiculares/genética , Testículo/metabolismo , Animales , Femenino , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Hormonas Testiculares/metabolismo
5.
PLoS One ; 8(2): e56955, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451117

RESUMEN

The integrity of male germ cell genome is critical for the correct progression of spermatogenesis, successful fertilization, and proper development of the offspring. Several DNA repair pathways exist in male germ cells. However, unlike somatic cells, key components of such pathways remain largely unidentified. Gametogenetin (GGN) is a testis-enriched protein that has been shown to bind to the DNA repair protein FANCL via yeast-two-hybrid assays. This finding and its testis-enriched expression pattern raise the possibility that GGN plays a role in DNA repair during spermatogenesis. Herein we demonstrated that the largest isoform GGN1 interacted with components of DNA repair machinery in the mouse testis. In addition to FANCL, GGN1 interacted with the critical component of the Fanconi Anemia (FA) pathway FANCD2 and a downstream component of the BRCA pathway, BRCC36. To define the physiological function of GGN, we generated a Ggn null mouse line. A complete loss of GGN resulted in embryonic lethality at the very earliest period of pre-implantation development, with no viable blastocysts observed. This finding was consistent with the observation that Ggn mRNA was also expressed in lower levels in the oocyte and pre-implantation embryos. Moreover, pachytene spermatocytes of the Ggn heterozygous knockout mice showed an increased incidence of unrepaired DNA double strand breaks (DSBs). Together, our results suggest that GGN plays a role in male meiotic DSB repair and is absolutely required for the survival of pre-implantation embryos.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Hormonas Testiculares/metabolismo , Animales , Células Cultivadas , Reparación del ADN/genética , Desarrollo Embrionario/genética , Femenino , Inmunoprecipitación , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormonas Testiculares/genética
6.
Reproduction ; 135(6): 751-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18502891

RESUMEN

Cysteine-rich secretory protein 2 (CRISP2) is a testis-enriched protein localized to the sperm acrosome and tail. CRISP2 has been proposed to play a critical role in spermatogenesis and male fertility, although the precise function(s) of CRISP2 remains to be determined. Recent data have shown that the CRISP domain of the mouse CRISP2 has the ability to regulate Ca(2+) flow through ryanodine receptors (RyR) and to bind to MAP kinase kinase kinase 11 (MAP3K11). To further define the biochemical pathways within which CRISP2 is involved, we screened an adult mouse testis cDNA library using a yeast two-hybrid assay to identify CRISP2 interacting partners. One of the most frequently identified CRISP2-binding proteins was gametogenetin 1 (GGN1). Interactions occur between the ion channel regulatory region within the CRISP2 CRISP domain and the carboxyl-most 158 amino acids of GGN1. CRISP2 does not bind to the GGN2 or GGN3 isoforms. Furthermore, we showed that Ggn1 is a testis-enriched mRNA and the protein first appeared in late pachytene spermatocytes and was up-regulated in round spermatids before being incorporated into the principal piece of the sperm tail where it co-localized with CRISP2. These data along with data on RyR and MAP3K11 binding define the CRISP2 CRISP domain as a protein interaction motif and suggest a role for the GGN1-CRISP2 complex in sperm tail development and/or motility.


Asunto(s)
Glicoproteínas/análisis , Cola del Espermatozoide/química , Hormonas Testiculares/análisis , Testículo/química , Acrosoma/química , Acrosoma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting/métodos , Western Blotting/métodos , Moléculas de Adhesión Celular , Clonación Molecular , Ingeniería Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inmunohistoquímica , Masculino , Proteínas de la Membrana , Ratones , Datos de Secuencia Molecular , Unión Proteica , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Espermátides/química , Espermátides/metabolismo , Espermatocitos/química , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Hormonas Testiculares/genética , Hormonas Testiculares/metabolismo , Testículo/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Hum Reprod ; 22(6): 1547-54, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17337470

RESUMEN

BACKGROUND: In mice, anti-Müllerian hormone (AMH) inhibits primordial follicle recruitment and decreases FSH sensitivity. Little is known about the role of AMH in human ovarian physiology. We hypothesize that in women AMH has a similar role in ovarian function as in mice and investigated this using a genetic approach. METHODS: The association of the AMH Ile(49)Ser and the AMH type II receptor (AMHR2) -482 A > G polymorphisms with menstrual cycle characteristics was studied in a Dutch (n = 32) and a German (n = 21) cohort of normo-ovulatory women. RESULTS: Carriers of the AMH Ser(49) allele had higher serum estradiol (E(2)) levels on menstrual cycle day 3 when compared with non-carriers in the Dutch cohort (P = 0.012) and in the combined Dutch and German cohort (P = 0.03). Carriers of the AMHR2 -482G allele also had higher follicular phase E(2) levels when compared with non-carriers in the Dutch cohort (P = 0.028), the German cohort (P = 0.048) and hence also the combined cohort (P = 0.012). Women carrying both AMH Ser(49) and AMHR2 -482G alleles had highest E(2) levels (P = 0.001). For both polymorphisms no association with serum AMH or FSH levels was observed. CONCLUSIONS: Polymorphisms in the AMH and AMHR2 genes are associated with follicular phase E(2) levels, suggesting a role for AMH in the regulation of FSH sensitivity in the human ovary.


Asunto(s)
Estradiol/sangre , Fase Folicular/sangre , Fase Folicular/genética , Glicoproteínas/genética , Receptores de Péptidos/genética , Hormonas Testiculares/genética , Adolescente , Adulto , Sustitución de Aminoácidos/genética , Hormona Antimülleriana , Femenino , Frecuencia de los Genes , Glicoproteínas/sangre , Humanos , Isoleucina/química , Isoleucina/genética , Polimorfismo Genético , Receptores de Péptidos/sangre , Receptores de Factores de Crecimiento Transformadores beta , Serina/química , Serina/genética , Hormonas Testiculares/sangre
8.
Dev Dyn ; 236(5): 1329-38, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17393497

RESUMEN

During development all zebrafish males first develop a "juvenile ovary" that later degenerates and transforms into a testis. In this study, individuals undergoing gonadal transformation were identified from a vas::egfp transgenic line and used for gene expression analysis of anti-Müllerian hormone (amh), ovarian aromatase (cyp19a1a) and 11 beta-hydroxylase (cyp11b, also known as P450(11 beta)) by real-time polymerase chain reaction and in situ hybridization. In the "normal (i.e., nontransforming) juvenile ovary" cyp19a1a was expressed around the oocytes, but cyp11b and amh could not be detected. During gonadal transformation cyp19a1a was down-regulated and could not be detected anymore; in contrast amh was up-regulated and highly expressed at similar regions where cyp19a1a had been expressed earlier. Furthermore, the normalized transcript levels of cyp19a1a and amh showed a reciprocal picture, i.e., the higher was the level of amh, the lower was that of cyp19a1a. Expression of cyp11b was also up-regulated but later than amh, and its localization was not related to the position of degenerating oocytes. These data indicate that amh is a candidate gene down-regulating cyp19a1a, leading to "juvenile ovary-to-testis" transformation. Whereas, cyp11b or its product, 11-ketotestosterone, is unlikely to be the inducer of zebrafish gonad transformation, as proposed earlier for some protogynous hermaphroditic fish species.


Asunto(s)
Aromatasa/genética , Glicoproteínas/genética , Esteroide 11-beta-Hidroxilasa/genética , Hormonas Testiculares/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Hormona Antimülleriana , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Ovario/embriología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Caracteres Sexuales , Diferenciación Sexual/genética , Transducción de Señal , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Testosterona/análogos & derivados , Testosterona/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
9.
Endocrinology ; 148(5): 2301-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17255205

RESUMEN

Anti-Müllerian hormone (AMH) plays an important role in folliculogenesis. AMH null mice display an increased recruitment of primordial follicles. Nevertheless, these mice do not have proportionally more preovulatory follicles. Therefore, AMH null mice provide an interesting genetic model to study the regulation of species-specific number of preovulatory follicles. We studied the follicle pool throughout the estrous cycle at 4 months of age. Analysis of the follicle pool revealed that AMH null mice have an increased and earlier cyclic recruitment of growing follicles despite a blunted FSH surge at estrus. However, FSH levels at estrus were apparently too low to support growth to the preovulatory stage because an increased level of atresia was observed, which neutralized the increased cyclic recruitment. When AMH null mice were subjected to a superovulation scheme, the rise in FSH levels resulted in the rescue of the recruited cohort of growing follicles. Analysis of the follicle pool also revealed that the increased recruitment of primordial follicles in AMH null mice was neutralized by an increased loss of follicles during the transition from small preantral to large preantral follicle. This major loss of follicles was not completely reflected by a corresponding augmentation of atresia but did correspond with an increased number of oocyte remnants observed in AMH null mice. We conclude that a combination of increased oocyte degeneration and increased follicular atresia neutralizes the increased initial and cyclic recruitment in AMH null mice to a normal number of preovulatory follicles.


Asunto(s)
Ciclo Estral/fisiología , Atresia Folicular/fisiología , Fase Folicular/fisiología , Glicoproteínas/genética , Oocitos/citología , Hormonas Testiculares/genética , Animales , Hormona Antimülleriana , Cuerpo Lúteo/citología , Cuerpo Lúteo/fisiología , Femenino , Fertilización In Vitro , Hormona Folículo Estimulante/sangre , Glicoproteínas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/fisiología , Tamaño de los Órganos , Folículo Ovárico/citología , Folículo Ovárico/fisiología , Superovulación/fisiología , Hormonas Testiculares/sangre , Útero/anatomía & histología
10.
Dev Dyn ; 236(1): 271-81, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17075875

RESUMEN

In mammals, the anti-Müllerian hormone (Amh) is responsible for the regression of the Müllerian ducts; therefore, Amh is an important factor of male sex differentiation. The amh gene has been cloned in various vertebrates, as well as in several teleost species. To date, all described species show a sexually dimorphic expression of amh during sex differentiation or at least in differentiated juvenile gonads. We have identified the medaka amh ortholog and examined its expression pattern. Medaka amh shows no sexually dimorphic expression pattern. It is expressed in both developing XY male and XX female gonads. In adult testes, amh is expressed in the Sertoli cells and in adult ovaries in granulosa cells surrounding the oocytes, like in mammals. To better understand the function of amh, we cloned the anti-Müllerian hormone receptor type II (amhrII) ortholog and compared its expression pattern with amh, aromatase (cyp19a1), and scp3. During gonad development, amhrII is coexpressed with medaka amh in somatic cells of the gonads and shows no sexually dimorphic expression. Only the expression level of the Amh type II receptor gene was decreased noticeably in adult female gonads. These results suggest that medaka Amh and AmhrII are involved in gonad formation and maintenance in both sexes.


Asunto(s)
Glicoproteínas/genética , Oryzias/embriología , Receptores de Péptidos/genética , Hormonas Testiculares/genética , Secuencia de Aminoácidos , Animales , Hormona Antimülleriana , Aromatasa/genética , Aromatasa/metabolismo , Clonación Molecular , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/metabolismo , Masculino , Datos de Secuencia Molecular , Oryzias/clasificación , Oryzias/metabolismo , Ovario/embriología , Ovario/metabolismo , Filogenia , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta , Alineación de Secuencia , Hormonas Testiculares/metabolismo , Testículo/embriología , Testículo/metabolismo
11.
Gene ; 388(1-2): 148-58, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17157448

RESUMEN

In mammals, a multitude of studies have shown that anti-Müllerian hormone (AMH/AMH), apart from inducing Müllerian duct regression during male sexual differentiation, exerts inhibitory effects on male and female gonadal steroidogenesis and differentiation. However, in lower vertebrates like teleost fish, the function of AMH/AMH has been far less explored. As a first step to unravel its potential role in reproduction in teleost fish, we isolated and characterised the AMH gene in the European sea bass (sb), Dicentrachus labrax, determined putative regulatory elements of its 5'-flanking region, and analysed its gene expression and those of alternatively-spliced transcripts. The characterisation of sb-AMH revealed distinct features that distinguishes it from mammalian and bird AMH, suggesting a high rate of diversification of AMH during vertebrate evolution. It contained 7 exons that were divided by 6 introns, of which the last intron (intron vi) was localised only a few nucleotides upstream of the putative peptide cleavage site. The guanine and cytosine content of the open reading frame (ORF) was 52.7% and thus notably lower than that of bird and mammalian AMH. Sb-AMH cDNA was 2045 base pairs (bp) long, containing an ORF of 1599 bp encoding 533 amino acids. Deduced amino acid similarities of the conserved, carboxyterminal domain were highest with AMH in Japanese flounder (84.2%) and lowest with chicken AMH (45.5%). In the proximal promoter sequence of sb-AMH, a steroidogenic factor-1 (SF-1) binding site was present; however other regulatory sequences essential for transcriptional activation of AMH in mammals were absent. Likewise, there was no sequence homology to an SF3A2 sequence within the first 3200 bp upstream of the sb-AMH translation start site. Gene expression of sb-AMH and of alternatively-spliced sb-AMH transcripts were analysed in male and female juvenile and adult gonads as well as in somatic tissues of juvenile males. sb-AMH expression was highest in juvenile testis, but still remarkably high in juvenile ovaries and adult testis, as well as in brain, pituitary, and heart of juvenile male sea bass. Apart from adult ovary, levels of alternatively-spliced sb-AMHexonII/-99 were marginal in comparison with sb-AMH. In contrast, the transcript variant sb-AMHexonVII/+5 was expressed to a similar extent as sb-AMH in all tissues examined. The results of this work have provided the basis for future studies concerning the regulation and function of AMH/AMH in this species.


Asunto(s)
Empalme Alternativo , Lubina/genética , Perfilación de la Expresión Génica , Glicoproteínas/genética , Hormonas Testiculares/genética , Región de Flanqueo 5' , Secuencia de Aminoácidos , Animales , Hormona Antimülleriana , Sitios de Unión , Clonación Molecular , Exones , Femenino , Intrones , Masculino , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
12.
Ann Endocrinol (Paris) ; 67(6): 567-74, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17194966

RESUMEN

Anti-Müllerian Hormone (AMH) is a member of the transforming Growth Factor-B (TGF-B) family synthesized exclusively by the gonads of both sexes. Over the last four years, numerous studies have examined the clinical usefulness of serum AMH levels as a predictor of ovarian response and pregnancy in assisted reproductive technology cycles. Assessment of ovarian reserve in women undergoing assisted reproduction is useful in optimising the treatment protocol. Availability of a reliable measure of ovarian reserve is essential. Currently, serum AMH level seems to be more strongly related to the ovarian reserve and to be a more discriminatory marker of assisted reproductive technology outcome than follicle-stimulating hormone, inhibin B or estradiol, which are more commonly used markers. Our study involving 69 women undergoing a cycle of in vitro fertilisation (IVF) or intracytoplamic sperm injection (ICSI) treatment, confirmed these results. We have shown in this study that AMH is significantly correlated with the number of eggs collected and is of great interest as a negative predictive value for the success of assisted reproductive technology (ART). Further studies are needed to determine AMH cut-off values.


Asunto(s)
Glicoproteínas/fisiología , Técnicas Reproductivas Asistidas , Hormonas Testiculares/fisiología , Hormona Antimülleriana , Femenino , Regulación de la Expresión Génica , Glicoproteínas/genética , Humanos , Masculino , Ovario/fisiología , Ovulación , Embarazo , Hormonas Testiculares/genética
13.
Reproduction ; 132(3): 443-53, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16940285

RESUMEN

Ovarian follicle formation during development and follicle maturation in adulthood are crucial determinants of female fertility and disruptions in these processes may result in subfertility or infertility. Among the several factors that are involved in ovarian physiology, Müllerian inhibiting substance (MIS) also known as anti-Müllerian hormone has emerged as an important marker to predict the follicle reserve. However, the roles of MIS in human ovarian physiology are unknown. To gain an insight into the potential roles of MIS in human ovarian differentiation during development and its regulation in adulthood, the expression profiles of MIS mRNA in the developing and adult human and monkey ovaries was examined by in situ hybridization. The results revealed that in the fetal human ovaries, MIS is specifically expressed at low levels in the granulosa cells of the developing primordial follicles; a small subset (approximately 2-3%) of oocytes express high amounts of MIS. In the adult human and monkey ovary, MIS mRNA is expressed at low levels in the primordial follicles, maximally in the primary and secondary follicles, and the expression is downregulated in the antral and atetric follicles. MIS expression is extinguished in the granulosa cells only after ovulation. These observations strongly favor the regulatory roles of MIS in folliculogenesis. MIS in the primate ovary may exert its effect during the primordial follicle formation to the terminal granulosa cell differentiation. The presence of MIS in a small subset of oocytes in the fetal ovary further points towards its additional role during fetal oocyte development.


Asunto(s)
Glicoproteínas/genética , Ovario/química , Primates/metabolismo , ARN Mensajero/análisis , Hormonas Testiculares/genética , Adulto , Animales , Hormona Antimülleriana , Femenino , Edad Gestacional , Glicoproteínas/metabolismo , Células de la Granulosa/química , Células de la Granulosa/metabolismo , Humanos , Hibridación in Situ/métodos , Recién Nacido , Macaca radiata , Folículo Ovárico/fisiología , Ovario/embriología , Ovario/crecimiento & desarrollo , Primates/embriología , Primates/crecimiento & desarrollo , Hormonas Testiculares/metabolismo
14.
Pediatr Endocrinol Rev ; 3(4): 347-58, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16816803

RESUMEN

Anti-Müllerian hormone (AMH), also called MUllerian inhibiting substance (MIS) is a product of supporting gonadal Sertoli and granulosa cells. Its main physiological role is the induction of regression of Müllerian ducts in male fetuses but it also plays a role in Leydig cell steroidogenesis and in follicular development. It is a member of the transforming growth factor B family and signals through two serine/threonine kinase receptors, only one of whom, type II, is specific. Type I receptors and the intracytoplasmic signaling molecules are shared with the bone morphogenetic family. AMH is positively regulated by SF1, SOX9 and FSH. Testosterone is a powerful downregulator. Males lacking functional AMH or AMH receptor genes do not undergo regression of MUllerian derivatives during fetal life. AMH is an excellent marker of prepubertal testicular function and has gained recognition as a valuable marker of follicular reserve in adult women.


Asunto(s)
Glicoproteínas/genética , Glicoproteínas/fisiología , Trastornos Gonadales/diagnóstico , Hormonas Testiculares/genética , Hormonas Testiculares/fisiología , Testículo/embriología , Testículo/fisiología , Animales , Hormona Antimülleriana , Biomarcadores , Niño , Femenino , Trastornos Gonadales/genética , Trastornos Gonadales/fisiopatología , Humanos , Masculino , Diferenciación Sexual/genética
15.
Environ Sci ; 13(2): 117-23, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16788563

RESUMEN

We have shown that in ICR pregnant mice exposed to diesel exhaust (DE), mRNA expression of mällerian inhibiting substance (MIS) and a steroid hormone transcription factor (Ad4BP/SF-1), which are essential in male gonadal differentiation, decreases in a DE concentration-dependent manner. To further investigate whether these effects differ among strains, we conducted the present study in 3 different strains: ICR mice, ddY mice, and C57BL/6J mice. The response to DE exposure differed among the 3 strains. In C57BL/6J male fetuses, only MIS mRNA expression significantly decreased, and in ddY male fetuses, there was no change in either MIS or Ad4BP/SF-1 mRNA expression. Although there was no definite correlation between mouse strain characteristics and differences in the effects of DE, our findings suggest strain-related variations in DE sensitivity with respect to gene expression regulating male gonadal differentiation.


Asunto(s)
Emisiones de Vehículos/toxicidad , Animales , Hormona Antimülleriana , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Embarazo , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Diferenciación Sexual , Especificidad de la Especie , Factor Esteroidogénico 1 , Hormonas Testiculares/genética , Hormonas Testiculares/metabolismo , Testículo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Mech Dev ; 123(6): 472-80, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16806847

RESUMEN

The anti-Müllerian hormone gene (Amh) is responsible for regression in males of the Müllerian ducts. The molecular mechanism of regulation of chicken Amh expression is poorly understood. To investigate the regulation of chicken Amh expression, we have cloned Amh cDNAs from quail and duck as well as the promoter regions of the gene from chicken, quail, and duck. The expression patterns of Amh during embryonic development in these three species were found to be similar, suggesting that the regulatory mechanisms of Amh expression are conserved. The sequence of the proximal promoter of Amh contains a putative binding site for steroidogenic factor 1 (SF1), the protein product of which can up-regulate Amh in mammals. We showed here that SF1 is able to activate the chicken Amh promoter and binds to its putative SF1 binding site. These results suggest that SF1 plays a role in regulation of Amh expression in avian species.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/metabolismo , Proteínas de Homeodominio/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Hormonas Testiculares/metabolismo , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Hormona Antimülleriana , Secuencia de Bases , Embrión de Pollo , Pollos , Patos , Glicoproteínas/genética , Proteínas de Homeodominio/metabolismo , Masculino , Datos de Secuencia Molecular , Conductos Paramesonéfricos/metabolismo , Codorniz , Receptores Citoplasmáticos y Nucleares/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factor Esteroidogénico 1 , Hormonas Testiculares/genética , Factores de Transcripción/metabolismo
17.
Development ; 133(12): 2359-69, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16687449

RESUMEN

Examination of Müllerian inhibiting substance (MIS) signaling in the rat in vivo and in vitro revealed novel developmental stage- and tissue-specific events that contributed to a window of MIS responsiveness in Müllerian duct regression. The MIS type II receptor (MISRII)-expressing cells are initially present in the coelomic epithelium of both male and female urogenital ridges, and then migrate into the mesenchyme surrounding the male Müllerian duct under the influence of MIS. Expression of the genes encoding MIS type I receptors, Alk2 and Alk3, is also spatiotemporally controlled; Alk2 expression appears earlier and increases predominantly in the coelomic epithelium, whereas Alk3 expression appears later and is restricted to the mesenchyme, suggesting sequential roles in Müllerian duct regression. MIS induces expression of Alk2, Alk3 and Smad8, but downregulates Smad5 in the urogenital ridge. Alk2-specific small interfering RNA (siRNA) blocks both the transition of MISRII expression from the coelomic epithelium to the mesenchyme and Müllerian duct regression in organ culture. Müllerian duct regression can also be inhibited or accelerated by siRNA targeting Smad8 and Smad5, respectively. Thus, the early action of MIS is to initiate an epithelial-to-mesenchymal transition of MISRII-expressing cells and to specify the components of the receptor/SMAD signaling pathway by differentially regulating their expression.


Asunto(s)
Células Epiteliales/fisiología , Glicoproteínas/metabolismo , Mesodermo/fisiología , Conductos Paramesonéfricos/fisiología , Receptores de Péptidos/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Hormonas Testiculares/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Hormona Antimülleriana , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Movimiento Celular/fisiología , Estructuras Embrionarias/anatomía & histología , Estructuras Embrionarias/fisiología , Células Epiteliales/citología , Femenino , Glicoproteínas/genética , Humanos , Hibridación in Situ , Masculino , Mesodermo/citología , Ratones , Conductos Paramesonéfricos/anatomía & histología , Embarazo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta , Proteínas Smad/genética , Hormonas Testiculares/genética
18.
Cell Mol Life Sci ; 63(5): 579-90, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16416028

RESUMEN

Early ovarian folliculogenesis begins with the breakdown of germ cell clusters and formation of primordial follicles. Primordial follicles are the smallest ovarian follicle units continuously recruited to grow into primary and more advanced ovarian follicles. Genes expressed in the germ cells such as Figla, Nobox, Kit and Ntrk2, as well as genes expressed in the surrounding somatic cells such as Foxl2, Kitl and Ngf, play critical functions during early folliculogenesis. Transgenic mice continue to provide important insights into the genetic pathways that regulate early mammalian folliculogenesis. Genes critical in early folliculogenesis are important determinants of reproductive life span and represent candidate genes for human ovarian failure.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Animales , Hormona Antimülleriana , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Folículo Ovárico/embriología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/genética , Factor de Células Madre/metabolismo , Hormonas Testiculares/genética , Hormonas Testiculares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Proc Natl Acad Sci U S A ; 102(45): 16421-5, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16260730

RESUMEN

The survival of motor neurons is controlled by multiple factors that regulate different aspects of their physiology. The identification of these factors is important because of their relationship to motor neuron disease. We investigate here whether Mullerian Inhibiting Substance (MIS) is a motor neuron survival factor. We find that motor neurons from adult mice synthesize MIS and express its receptors, suggesting that mature motor neurons use MIS in an autocrine fashion or as a way to communicate with each other. MIS was observed to support the survival and differentiation of embryonic motor neurons in vitro. During development, male-specific MIS may have a hormone effect because the blood-brain barrier has yet to form, raising the possibility that MIS participates in generating sex-specific differences in motor neurons.


Asunto(s)
Glicoproteínas/fisiología , Neuronas Motoras/fisiología , Hormonas Testiculares/fisiología , Animales , Hormona Antimülleriana , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/análisis , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Supervivencia Celular , Células Cultivadas , Glicoproteínas/genética , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis , Receptores de Péptidos/genética , Receptores de Péptidos/fisiología , Receptores de Factores de Crecimiento Transformadores beta , Diferenciación Sexual , Hormonas Testiculares/genética
20.
Reprod Biol Endocrinol ; 3: 63, 2005 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16281973

RESUMEN

Sex determination is the process deciding the sex of a developing embryo. This is usually determined genetically; however it is a delicate process, which in many cases can be influenced by environmental factors. The mechanisms controlling zebrafish sex determination and differentiation are not known. To date no sex linked genes have been identified in zebrafish and no sex chromosomes have been identified. However, a number of genes, as presented here, have been linked to the process of sex determination or differentiation in zebrafish. The zebrafish FTZ-F1 genes are of central interest as they are involved in regulating interrenal development and thereby steroid biosynthesis, as well as that they show expression patterns congruent with reproductive tissue differentiation and function. Zebrafish can be sex reversed by exposure to estrogens, suggesting that the estrogen levels are crucial during sex differentiation. The Cyp19 gene product aromatase converts testosterone into 17 beta-estradiol, and when inhibited leads to male to female sex reversal. FTZ-F1 genes are strongly linked to steroid biosynthesis and the regulatory region of Cyp19 contains binding sites for FTZ-F1 genes, further linking FTZ-F1 to this process. The role of FTZ-F1 and other candidates for zebrafish sex determination and differentiation is in focus of this review.


Asunto(s)
Factores de Transcripción Fushi Tarazu/genética , Procesos de Determinación del Sexo , Diferenciación Sexual/fisiología , Pez Cebra/genética , Animales , Hormona Antimülleriana , Aromatasa/genética , Proteínas de Unión al ADN/genética , Factores de Unión al ADN Específico de las Células Eritroides/genética , Femenino , Glicoproteínas/genética , Proteínas HMGB/genética , Proteínas de Homeodominio/genética , Masculino , Modelos Genéticos , Receptores Citoplasmáticos y Nucleares/genética , Factor de Transcripción SOX9 , Factor Esteroidogénico 1 , Hormonas Testiculares/genética , Factores de Transcripción/genética , Proteínas WT1/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA