Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
BMC Oral Health ; 24(1): 1016, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215287

RESUMEN

BACKGROUND: TMJ morphology/position and trabecular structure are influenced by various factors. The role of the interincisal angle, an indicator of the anterior occlusal relationship, on TMJ remains unclear. This study aims to investigate the morphology, trabecular bone structure, and position of the condyle, as well as the glenoid fossa's morphology in skeletal class II populations with different interincisal angles. MATERIALS AND METHODS: A total of 150 adult patients with normodivergent facial types and skeletal class II malocclusions were selected and divided into three groups based on their interincisal angles: normal, small, and large angle groups. The indexes of TMJ were measured using cone-beam computed tomography (CBCT) data and analyzed using Dolphin Imaging, Mimics, and ImageJ. RESULTS: The small angle group had the smallest anteroposterior diameter (APD), while the large angle group had a greater mediolateral diameter (MLD). The large angle group exhibited significantly the largest maximum axial area, bone surface area, and bone volume (P < 0.05). Small and large angle groups exhibited greater bone trabeculae (Tb. N) and thinner trabecular thickness (Tb. Th). Compared to the normal angle group, the small angle group exhibited a larger horizontal condylar angle and smaller bilateral condylar angles on the axial plane, while the large angle group showed the opposite trend. Small and large angle groups showed a reduced vertical condyle angle on the coronal plane, with the largest reduction observed in the large angle group (P < 0.05). Small and large angle groups had higher heights of the glenoid fossa (GFH). The large angle group exhibited the greatest GFH and width of the glenoid fossa (GFW) (P < 0.05). CONCLUSION: The large angle group had elongated oval and large condyles, and deeper glenoid fossae, while a flattened-oval and smaller condyle, and wider and shallower glenoid fossae were observed in the small angle group. Small and large interincisal angle affects the structure of condylar trabeculae, resulting in thinner Tb. Th and greater Th. N. In the condylar position, small and large angle groups exhibit condylar rotation in the axial and coronal planes. Therefore, the interincisal angle affects the morphology, position, and trabecular structure of the TMJ. This implies that we must pay attention to the impact of the interincisal angle on TMJ, and it is crucial to restore the normal interincisal angle during orthodontic treatment.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Maloclusión Clase II de Angle , Cóndilo Mandibular , Articulación Temporomandibular , Humanos , Masculino , Femenino , Estudios Retrospectivos , Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/anatomía & histología , Articulación Temporomandibular/patología , Adulto , Maloclusión Clase II de Angle/diagnóstico por imagen , Maloclusión Clase II de Angle/patología , Cóndilo Mandibular/diagnóstico por imagen , Cóndilo Mandibular/anatomía & histología , Cóndilo Mandibular/patología , Adulto Joven , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/anatomía & histología , Adolescente
2.
BMC Oral Health ; 24(1): 924, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123162

RESUMEN

BACKGROUND: The infrazygomatic crest mini-screw has been widely used, but the biomechanical performance of mini-screws at different insertion angles is still uncertain. The aim of this study was to analyse the primary stability of infrazygomatic crest mini-screws at different angles and to explore the effects of the exposure length (EL), screw-cortical bone contact area (SCA), and screw-trabecular bone contact area (STA) on this primary stability. METHODS: Ninety synthetic bones were assigned to nine groups to insert mini-screws at the cross-combined angles in the occlusogingival and mesiodistal directions. SCA, STA, EL, and lateral pull-out strength (LPS) were measured, and their relationships were analysed. Twelve mini-screws were then inserted at the optimal and poor angulations into the maxillae from six fresh cadaver heads, and the same biomechanical metrics were measured for validation. RESULTS: In the synthetic-bone test, the LPS, SCA, STA, and EL had significant correlations with the angle in the occlusogingival direction (rLPS = 0.886, rSCA = -0.946, rSTA = 0.911, and rEL= -0.731; all P < 0.001). In the cadaver-validation test, significant differences were noted in the LPS (P = 0.011), SCA (P = 0.020), STA (P = 0.004), and EL (P = 0.001) between the poor and optimal angulations in the occlusogingival direction. The STA had positive correlations with LPS (rs = 0.245 [synthetic-bone test] and r = 0.720 [cadaver-validation test]; both P < 0.05). CONCLUSIONS: The primary stability of the infrazygomatic crest mini-screw was correlated with occlusogingival angulations. The STA significantly affected the primary stability of the infrazygomatic crest mini-screw, but the SCA and EL did not.


Asunto(s)
Tornillos Óseos , Hueso Esponjoso , Hueso Cortical , Humanos , Hueso Cortical/anatomía & histología , Fenómenos Biomecánicos , Hueso Esponjoso/anatomía & histología , Métodos de Anclaje en Ortodoncia/instrumentación , Métodos de Anclaje en Ortodoncia/métodos , Cadáver , Cigoma/cirugía , Cigoma/anatomía & histología , Maxilar/anatomía & histología , Análisis del Estrés Dental
3.
Sci Rep ; 14(1): 9977, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693297

RESUMEN

This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brzesc Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.


Asunto(s)
Hueso Esponjoso , Humanos , Polonia , Masculino , Femenino , Adulto , Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/diagnóstico por imagen , Historia Medieval , Persona de Mediana Edad , Columna Vertebral/anatomía & histología , Columna Vertebral/diagnóstico por imagen , Historia Antigua , Microtomografía por Rayos X , Factores de Edad , Anciano , Densidad Ósea , Factores Sexuales , Adulto Joven
4.
Am J Biol Anthropol ; 184(3): e24939, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38631677

RESUMEN

OBJECTIVES: Calcaneal external shape differs among nonhuman primates relative to locomotion. Such relationships between whole-bone calcaneal trabecular structure and locomotion, however, have yet to be studied. Here we analyze calcaneal trabecular architecture in Gorilla gorilla gorilla, Gorilla beringei beringei, and G. b. graueri to investigate general trends and fine-grained differences among gorilla taxa relative to locomotion. MATERIALS AND METHODS: Calcanei were micro-CT scanned. A three-dimensional geometric morphometric sliding semilandmark analysis was carried out and the final landmark configurations used to position 156 volumes of interest. Trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone volume fraction (BV/TV) were calculated using the BoneJ plugin for ImageJ and MATLAB. Non-parametric MANOVAs were run to test for significant differences among taxa in parameter raw values and z-scores. Parameter distributions were visualized using color maps and summarized using principal components analysis. RESULTS: There are no significant differences in raw BV/TV or Tb.Th among gorillas, however G. b. beringei significantly differs in z-scores for both parameters (p = <0.0271). All three taxa exhibit relatively lower BV/TV and Tb.Th in the posterior half of the calcaneus. This gradation is exacerbated in G. b. beringei. G. b. graueri significantly differs from other taxa in Tb.Sp z-scores (p < 0.001) indicating a different spacing distribution. DISCUSSION: Relatively higher Tb.Th and BV/TV in the anterior calcaneus among gorillas likely reflects higher forces associated with body mass (transmitted through the subtalar joint) relative to forces transferred through the posterior calcaneus. The different Tb.Sp pattern in G. b. graueri may reflect proposed differences in foot positioning during locomotion.


Asunto(s)
Calcáneo , Hueso Esponjoso , Gorilla gorilla , Animales , Calcáneo/anatomía & histología , Calcáneo/fisiología , Calcáneo/diagnóstico por imagen , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/fisiología , Masculino , Microtomografía por Rayos X , Femenino , Antropología Física , Locomoción/fisiología
5.
J Anat ; 245(1): 156-180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381116

RESUMEN

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.


Asunto(s)
Hueso Esponjoso , Fémur , Hominidae , Animales , Masculino , Femenino , Fémur/anatomía & histología , Hominidae/anatomía & histología , Hominidae/fisiología , Humanos , Hueso Esponjoso/anatomía & histología , Locomoción/fisiología , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología
6.
Anat Rec (Hoboken) ; 307(9): 3152-3165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38357839

RESUMEN

Investigating skeletal adaptations to bipedalism informs our understanding of form-function relationships. The calcaneus is an important skeletal element to study because it is a weight-bearing bone with a critical locomotor role. Although other calcaneal regions have been well studied, we lack a clear understanding of the functional role of the lateral plantar process (LPP). The LPP is a bony protuberance on the inferolateral portion of the calcaneus thought to aid the tuberosity in transmission of ground reaction forces during heel-strike. Here, we analyze LPP internal trabecular structure relative to other calcaneal regions to investigate its potential functional affinities. Human calcanei (n = 20) were micro-CT scanned, and weighted spherical harmonic analysis outputs were used to position 251 volumes of interest (VOI) within each bone. Trabecular thickness (Tb.Th), spacing (Tb.Sp), degree of anisotropy (DA), and bone volume fraction (BV/TV) were calculated for each VOI. Similarities in BV/TV and DA (p = 0.2741) between the LPP and inferior tuberosity support suggestions that the LPP is a weight-bearing structure that may transmit forces in a similar direction. The LPP significantly differs from the inferior tuberosity in Tb.Th and Tb.Sp (p < 0.05). Relatively thinner, more closely spaced trabeculae in the LPP may serve to increase internal surface area to compensate for its relatively small size compared to the tuberosity. Significant differences in all parameters between LPP and joint articular surfaces indicate that trabecular morphology is differently adapted for the transmission of forces associated with body mass through joints.


Asunto(s)
Calcáneo , Microtomografía por Rayos X , Humanos , Calcáneo/anatomía & histología , Calcáneo/fisiología , Calcáneo/diagnóstico por imagen , Masculino , Femenino , Anciano , Persona de Mediana Edad , Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/fisiología , Hueso Esponjoso/diagnóstico por imagen , Soporte de Peso/fisiología , Adulto
7.
Am J Biol Anthropol ; 183(3): e24824, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37493308

RESUMEN

OBJECTIVES: This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS: We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS: Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION: The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.


Asunto(s)
Articulaciones del Carpo , Hominidae , Hombre de Neandertal , Animales , Humanos , Hueso Esponjoso/anatomía & histología , Fósiles , Gorilla gorilla , Pongo
8.
Int. j. morphol ; 40(6): 1579-1586, dic. 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1421821

RESUMEN

SUMMARY: For treating cruciate ligament injuries, especially for characterizing the mechanics of the tunnel in cruciate ligament reconstruction, correctly understanding the bony information of the attachment area of the cruciate ligaments is significant. We studied 31 knee joints of middle-aged Chinese adults using the P45 sheet plastination technique, focusing on the attachment areas of the cruciate ligaments, especially the bony structures. The trabeculae at the attachment area were distributed radially and extended deep into the medial wall of the lateral condyle of the femur. However, in the anterior part of the intercondylar eminence, the trabeculae of the anterior group were parallelly arranged along the tendinous fibers of the anterior cruciate ligament, while the trabeculae of the posterior group were parallelly arranged along the perpendicular direction of the anterior cruciate ligament fibers. Similarly, at the attachment area of the lateral wall of the medial condyle of the posterior cruciate ligament, the trabeculae extended radially toward the deep medial condyle. Deep in the posterior part of the intercondylar eminence, the trabeculae were arranged longitudinally. In the anterior part of the intercondylar eminence, the trabeculae were parallelly arranged along the perpendicular directions of ligament fibers. The distribution patterns of the trabecular at the attachment areas of the cruciate ligaments at the ends of the femur and tibia were different. This difference should be considered when orthopedic surgeons reconstruct anterior cruciate ligaments.


Para el tratamiento de lesiones de los ligamentos cruzados, especialmente para caracterizar la mecánica del túnel en su reconstrucción, es importante comprender correctamente la información ósea del área de inserción de estos ligamentos. Estudiamos 31 articulaciones de rodilla de individuos chinos, adultos, de mediana edad, utilizando la técnica de plastinación de láminas P45, centrándonos en las áreas de unión de los ligamentos cruzados, especialmente en las estructuras óseas. Las trabéculas en el área de inserción se distribuyeron radialmente y se extendieron profundamente en la pared medial del cóndilo lateral del fémur. Sin embargo, en la parte anterior de la eminencia intercondílea, las trabéculas del grupo anterior estaban dispuestas paralelamente a lo largo de las fibras tendinosas del ligamento cruzado anterior, mientras que las trabéculas del grupo posterior estaban dispuestas paralelamente a lo largo de la dirección perpendicular de las fibras del ligamento cruzado anterior. De manera similar, en el área de inserción en la cara lateral del cóndilo medial del ligamento cruzado posterior, las trabéculas se extendían radialmente y profundas hacia el cóndilo medial. Profundamente en la parte posterior de la eminencia intercondílea, las trabéculas estaban dispuestas longitudinalmente. En la parte anterior de la eminencia intercondílea, las trabéculas estaban dispuestas paralelamente a lo largo de las direcciones perpendiculares de las fibras del ligamento. Los patrones de distribución del tejido óseo trabecular en las áreas de unión de los ligamentos cruzados en los extremos del fémur y la tibia eran diferentes. Estas diferencias deben tenerse en consideración cuando los cirujanos ortopédicos reconstruyen los ligamentos cruzados anteriores.


Asunto(s)
Humanos , Plastinación/métodos , Articulación de la Rodilla/anatomía & histología , Ligamentos Articulares/anatomía & histología , Hueso Esponjoso/anatomía & histología
9.
PLoS One ; 17(1): e0260924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015756

RESUMEN

Bone quality is a critical factor that, along with bone quantity, determines bone strength. Image-based parameters are used for assessing bone quality non-invasively. The trabecular bone score (TBS) is used to assess quality of trabecular bone and femur geometry for cortical bone. Little is known about the associations between these two bone quality parameters and whether they show differences in the relationships with age and body mass index (BMI). We investigated the associations between the trabecular bone score (TBS) and femur cortical geometry. Areal bone mineral density (BMD) was assessed using dual energy X-ray absorptiometry (DXA) and the TBS was assessed using iNsight software and, femur geometry using APEX (Hologic). A total of 452 men and 517 women aged 50 years and older with no medical history of a condition affecting bone metabolism were included. Z-scores for TBS and cortical thickness were calculated using the age-specific mean and SD for each parameter. A 'discrepancy group' was defined as patients whose absolute Z-score difference between TBS and cortical thickness was > 1 point. TBS and cortical thickness correlated negatively with age both in men and women, but the associations were stronger in women. Regarding the associations with BMI, TBS provided significant negative correlation with BMI in the range of BMI > 25 kg/m2. By contrast, cortical thickness correlated positively with BMI for all BMI ranges. These bone quality-related parameters, TBS and cortical thickness, significantly correlated, but discordance between these two parameters was observed in about one-third of the men and women (32.7% and 33.4%, respectively). Conclusively, image-based bone quality parameters for trabecular and cortical bone exhibit both similarities and differences in terms of their associations with age and BMI. These different profiles in TBS and FN cortical thickness might results in different risk profiles for the vertebral fractures or hip fractures in a certain percentage of people.


Asunto(s)
Hueso Esponjoso/fisiología , Fémur/fisiología , Absorciometría de Fotón , Anciano , Índice de Masa Corporal , Densidad Ósea , Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/diagnóstico por imagen , Estudios Transversales , Femenino , Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Cadera/anatomía & histología , Cadera/fisiología , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/diagnóstico , Posmenopausia
10.
Cells ; 10(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34831244

RESUMEN

The bone matrix is constantly remodeled by the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Whereas type I collagen is the most abundant bone matrix protein, there are several other proteins present, some of them specifically produced by osteoblasts. In a genome-wide expression screening for osteoblast differentiation markers we have previously identified two collagen-encoding genes with unknown function in bone remodeling. Here we show that one of them, Col22a1, is predominantly expressed in bone, cultured osteoblasts, but not in osteoclasts. Based on this specific expression pattern we generated a Col22a1-deficient mouse model, which was analyzed for skeletal defects by µCT, undecalcified histology and bone-specific histomorphometry. We observed that Col22a1-deficient mice display trabecular osteopenia, accompanied by significantly increased osteoclast numbers per bone surface. In contrast, cortical bone parameters, osteoblastogenesis or bone formation were unaffected by the absence of Col22a1. Likewise, primary osteoblasts from Col22a1-deficient mice did not display a cell-autonomous defect, and they did not show altered expression of Rankl or Opg, two key regulators of osteoclastogenesis. Taken together, we provide the first evidence for a physiological function of Col22a1 in bone remodeling, although the molecular mechanisms explaining the indirect influence of Col22a1 deficiency on osteoclasts remain to be identified.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Colágeno/deficiencia , Animales , Enfermedades Óseas Metabólicas/patología , Recuento de Células , Colágeno/metabolismo , Fémur/diagnóstico por imagen , Fémur/patología , Ratones Endogámicos C57BL , Modelos Animales , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Fenotipo , Cuerpo Vertebral , Microtomografía por Rayos X
11.
Appl Physiol Nutr Metab ; 46(12): 1525-1534, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34370961

RESUMEN

The effects of treadmill interval training (IT) and free-fall exercise were evaluated on bone parameters including osteocyte related characteristics. Thirty-eight 4-month-old male Wistar rats were randomly divided into a control (C) group and exercise groups: IT, 10 free-fall impacts/day with a 10-s (FF10) or 20-s interval between drops (FF20), 5 days/week, for 9 weeks. We assessed bone mineral density (BMD); microarchitecture by µCT; mechanical strength by a 3-point bending test; density and occupancy of the osteocyte lacunae by toluidine blue staining; osteocalcin and NTx systemic levels by ELISA; and bone tissue Sost messenger RNA (mRNA) expression by RT-PCR. NTx levels were significantly lower in exercise groups as compared with the C group. In exercise groups the Sost mRNA expression was significantly lower than in C. Tb.N was significantly higher for IT and FF20 compared with the C group. Tb.Sp was significantly lower in FF10 compared with the C group. Both IT and FF20 were associated with higher tibial lacunar density as compared with FF10. compared with FF10, IT fat mass was lower, while tibial osteocyte lacunae occupancy and systemic osteocalcin level were higher. All exercise modes were efficient in reducing bone resorption. Both IT and free-fall impact with appropriate recovery periods, which may be beneficial for bone health and osteocyte-related characteristics. Novelty: Interval training is beneficial for bone mineral density. Exercises decreased both bone resorption and inhibition of bone formation (Sost mRNA). Longer interval recovery time favors osteocyte lacunae density.


Asunto(s)
Densidad Ósea , Proteínas Morfogenéticas Óseas/genética , Hueso Esponjoso/citología , Marcadores Genéticos/genética , Osteocalcina/sangre , Osteocitos/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Animales , Fenómenos Biomecánicos , Composición Corporal , Resorción Ósea , Hueso Esponjoso/anatomía & histología , Recuento de Células , Colágeno Tipo I/análisis , Expresión Génica , Masculino , Osteocitos/citología , Osteogénesis/fisiología , Péptidos/análisis , Ejercicio Pliométrico , ARN Mensajero/genética , Distribución Aleatoria , Ratas Wistar , Carrera/fisiología , Resistencia a la Tracción
12.
J Anat ; 239(2): 351-373, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33942895

RESUMEN

Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor activity due to its importance in movement and load transfer at the midcarpal joint proximally and carpometacarpal joints distally. Although the shape of bones and their articulations are linked to joint mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we apply a whole-bone methodology to quantify the cortical and trabecular architecture (separately and combined) of the capitate across bipedal (modern Homo sapiens), knuckle-walking (Pan paniscus, Pan troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n = 69). It is hypothesized that variation in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular and cortical architecture in the proximal and distal regions, as a result of being part of mechanically divergent joints proximally and distally, will differ across these portions of the capitate. Results indicate that the capitate of knuckle-walking and suspensory hominoids is differentiated from bipedal Homo primarily by significantly thicker distal cortical bone. Knuckle-walking taxa are further differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. An allometric analysis indicates that size is not a significant determinate of bone variation across hominoids, although sexual dimorphism may influence some parameters within Gorilla. Results suggest that internal trabecular and cortical bone is subjected to different forces and functional adaptation responses across the capitate (and possibly other short bones). Additionally, while separating trabecular and cortical bone is normal protocol of current whole-bone methodologies, this study shows that when applied to carpals, removing or studying the cortical bone separately potentially obfuscates functionally relevant signals in bone structure.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Hueso Grande del Carpo/anatomía & histología , Hueso Cortical/anatomía & histología , Hominidae/anatomía & histología , Animales , Anisotropía , Biometría , Hueso Esponjoso/diagnóstico por imagen , Hueso Grande del Carpo/diagnóstico por imagen , Hueso Cortical/diagnóstico por imagen , Humanos , Microtomografía por Rayos X
13.
J Hum Evol ; 155: 102984, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33945891

RESUMEN

The Border Cave 3 (BC3) infant skeleton has been understudied, despite its importance as an example of a well-preserved and fairly complete immature skeleton of early Homo sapiens which potentially provides a rare window into various aspects of ontogenetic development, including locomotor activity (e.g., timing of gait events). Trabecular structure in the BC3 ilium was evaluated to investigate whether it matches that of an equivalently aged infant from a postindustrialized society. Microcomputed tomography (µCT) scans were acquired from the BC3 infant and from an ontogenetic series of 25 postindustrial infants that were divided into three age classes (ACs) ranging from neonates to toddlers (<36 months). All ilia were qualitatively compared and then digitally subdivided into 10 volumes of interest (VOIs) based on anatomical reference points. The VOIs were quantified and ontogenetic differences in trabecular structure were statistically evaluated. Across the comparative ontogenetic series, trabecular architectural properties overlapped in all regions. However, trabecular thickness increased significantly after the first year of life. The BC3 infant demonstrated generally similar trabecular structure to that observed in the age-equivalent postindustrial infants (AC2), including relatively strong development of the trabecular chiasma qualitatively. However, some interesting distinctions were observed in BC3, such as low strut thickness compared with infants from the postindustrial sample, that bear further exploration in future studies. Evaluation of only one individual from the Middle Stone Age (MSA), coupled with the relatively small comparative sample, limit our ability to distinguish more meaningful biological differences in trabecular structure throughout ontogeny from idiosyncratic characteristics. Nonetheless, results of this study extend ongoing research on infant locomotor and morphological development to archeological populations in the Middle Stone Age. Further cross-cultural studies consisting of larger comparative postindustrial samples may provide additional information on trabecular structure in the infant ilium during this important developmental timeframe.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Marcha , Ilion/anatomía & histología , Preescolar , Humanos , Lactante , Recién Nacido , Microtomografía por Rayos X
14.
Appl Physiol Nutr Metab ; 46(11): 1337-1344, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34000207

RESUMEN

Obesity increases the risk for pathological conditions such as bone loss. On the other hand, physical exercise reduces body adiposity. To test the hypothesis that physical activity improves bone quality, we evaluated voluntary running of defined distances on trabecular and cortical microstructure in mice fed a high-fat diet (HFD). Sedentary mice were fed the standard AIN93G diet or the HFD. Mice fed the HFD remained sedentary or were assigned to unrestricted running or 75%, 50%, and 25% of unrestricted running with an average running activity at 8.3, 6.3, 4.2, and 2.1 km per day, respectively. The bone structural differences found in sedentary mice were that HFD, compared with the AIN93G diet, resulted in a lower bone volume fraction (BV/TV) and a higher structure model index (SMI) in vertebrae. Running had a greater effect on trabecular microstructure in femurs than in vertebrae; the decrease in SMI and an increase in trabecular thickness (Tb.Th) were in dose-dependent manners. Running was positively correlated with BV/TV and Tb.Th and inversely correlated with SMI in femurs. The HFD increased plasma concentrations of tartrate-resistant acid phosphatase 5b, a marker of bone resorption, in sedentary mice, while running decreased it in a dose-dependent manner. The findings show that voluntary running improves bone quality in young adult mice fed an HFD. Novelty: The high-fat diet alters bone microstructure by increasing bone resorption. Quantitative voluntary running improves bone microstructure through its attenuation of bone resorption in mice fed a high-fat diet.


Asunto(s)
Densidad Ósea , Hueso Esponjoso/anatomía & histología , Dieta Alta en Grasa/efectos adversos , Condicionamiento Físico Animal/fisiología , Carrera/fisiología , Animales , Biomarcadores/sangre , Índice de Masa Corporal , Peso Corporal , Resorción Ósea , Hueso Esponjoso/metabolismo , Ingestión de Energía , Fémur/anatomía & histología , Fémur/metabolismo , Glicoproteínas/sangre , Masculino , Ratones Endogámicos C57BL , Obesidad/patología , Obesidad/fisiopatología , Columna Vertebral/anatomía & histología , Columna Vertebral/metabolismo , Fosfatasa Ácida Tartratorresistente/sangre , Microtomografía por Rayos X
15.
J Bone Miner Metab ; 39(4): 558-571, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33721112

RESUMEN

INTRODUCTION: Bone metabolism imbalances cause bone metabolism diseases, like osteoporosis, through aging. Although some chemokines are known to be involved in bone mass regulation, many have not been investigated. Thus, the present study aimed to investigate the role of chemokine ligand 28 (CCL28) on bone metabolism. MATERIALS AND METHODS: To investigate the role of CCL28 on bone metabolism, 10-week-old male wild-type and Ccl28 knockout (Ccl28 KO) mice were analyzed. Microcomputed tomography analysis and bone tissue morphometry were used to investigate the effect of Ccl28 deficiency on the bone. CCL28 localization in bone tissue was assumed by immunohistochemistry. Osteoblast and osteoclast markers were evaluated by enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction. Finally, in vitro experiments using MC3T3-E1 and bone marrow macrophages revealed the direct effect of CCL28 on osteoblast and osteoclast. RESULTS: This study showed that Ccl28 deficiency significantly increased bone mass and the number of mature osteoblasts. Immunoreactivity for CCL28 was observed in osteoblasts and osteoclasts on bone tissue. Additionally, Ccl28 deficiency promoted osteoblast and osteoclast maturation. Moreover, CCL28 treatment decreased osteoblast and osteoclast activities but did not affect differentiation. CONCLUSION: In summary, this study indicated that CCL28 is one of the negative regulators of bone mass by suppressing osteoblast and osteoclast activities. These results provide important insights into bone immunology and the selection of new osteoporosis treatments.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Quimiocinas CC/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animales , Biomarcadores/sangre , Densidad Ósea , Hueso Esponjoso/metabolismo , Quimiocinas CC/deficiencia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ligandos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Osteogénesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Tibia/anatomía & histología
16.
PLoS One ; 16(3): e0247764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661944

RESUMEN

In this paper, we take the elliptical pore structure which is similar to the microstructure of cancellous bone as the research object, four groups of bone scaffolds were designed from the perspective of pore size, porosity and pore distribution. The size of the all scaffolds were uniformly designed as 10 × 10 × 12 mm. Four groups of model samples were prepared by selective laser melting (SLM) and Ti6Al4V materials. The statics performance of the scaffolds was comprehensively evaluated by mechanical compression simulation and mechanical compression test, the manufacturing error of the scaffold samples were evaluated by scanning electron microscope (SEM), and the permeability of the scaffolds were predicted and evaluated by simulation analysis of computational fluid dynamics (CFD). The results show that the different distribution of porosity, pore size and pores of the elliptical scaffold have a certain influence on the mechanical properties and permeability of the scaffold, and the reasonable size and angle distribution of the elliptical pore can match the mechanical properties and permeability of the elliptical pore scaffold with human cancellous bone, which has great potential for research and application in the field of artificial bone scaffold.


Asunto(s)
Aleaciones/química , Hueso Esponjoso/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Titanio/química , Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/metabolismo , Humanos , Rayos Láser , Permeabilidad , Porosidad , Estrés Mecánico
17.
Anat Rec (Hoboken) ; 304(1): 31-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975051

RESUMEN

The process of domestication is complex and results in significant morphological, cognitive, and physiological changes. In canids, some of the traits indicative of domestication of domestic dogs compared to their wild counterparts the wolves are prosociality toward humans, reduced stress hormone levels, and reduced cranial capacity. Research suggests that selection for prosociality among dogs resulted in morphological changes such as reduction in cranial capacity, juvenilization of the face, and overall gracile morphology. Interestingly, similar features have been described in modern humans compared to extinct species of Homo, for example, Neanderthals. Therefore, the human self-domestication hypothesis has been proposed to partially explain the gracile modern human skeleton. Specifically, that as modern humans settled in communities, there was increased selection for prosociality (intergroup cooperation); and one of the by-products of this selection was the evolution of a gracile skeleton, including a slight reduction in cranial capacity, reduced brow ridge and tooth size, and low trabecular bone fraction (TBF). However, TBF variation has not been tested between domestic dogs and wolves, who underwent self-domestication. Thus, this study tests the hypothesis that dogs have low TBF as a consequence of domestication compared to their wild counterparts, the wolves, by comparing TBF in the hindlimbs-proximal femur and distal tibia- of the two species. Wilcoxon rank sum tests show that dogs have lower TBF values than wolves in both elements. These preliminary results add to the literature documenting changes in self-domesticated species and provide a potential analog to further the understanding of self-domestication.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Domesticación , Cabeza Femoral/anatomía & histología , Tibia/anatomía & histología , Animales , Conducta Animal/fisiología , Hueso Esponjoso/diagnóstico por imagen , Perros , Cabeza Femoral/diagnóstico por imagen , Tibia/diagnóstico por imagen , Lobos , Microtomografía por Rayos X
18.
J Anat ; 238(3): 643-652, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33058161

RESUMEN

Cetaceans (dolphins, whales, and porpoises) are fully aquatic mammals that are supported by water's buoyancy and swim through axial body bending. Swimming is partially mediated by variations in vertebral morphology that creates trade-offs in body flexibility and rigidity between axial regions that either enhance or reduce displacement between adjacent vertebrae. Swimming behavior is linked to foraging ecology, where deep-diving cetaceans glide a greater proportion of the time compared to their shallow-diving counterparts. In this study, we categorized 10 species of cetaceans (Families Delphinidae and Kogiidae) into functional groups determined by swimming patterns (rigid vs. flexible torso) and diving behavior (shallow vs. deep). Here, we quantify vertebral trabecular microarchitecture (a) among functional groups (rigid-torso shallow diver (RS), rigid-torso deep diver (RD), and flexible-torso deep diver (FD)), and (b) among vertebral column regions (posterior thoracic, lumbar, caudal peduncle, and fluke insertion). We microCT scanned vertebral bodies, from which 1-5 volumes of interest were selected to quantify bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (TbTh), trabecular number (TbN), trabecular separation (TbSp), and degree of anisotropy (DA). We found that BV/TV was greatest in the rigid-torso shallow-diving functional group, smallest in flexible-torso deep-diving species, and intermediate in the rigid-torso deep-diving group. DA was significantly greater in rigid-torso caudal oscillators than in their flexible-torso counterparts. We found no variation among vertebral regions for any microarchitectural variables. Despite having osteoporotic skeletons, cetacean vertebrae had greater BV/TV, TbTh, and DA than previously documented in terrestrial mammalian bone. Cetacean species are an ideal model to investigate the long-term adaptations, over an animal's lifetime and over evolutionary time, of trabecular bone in non-weight-bearing conditions.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Delfines/anatomía & histología , Columna Vertebral/anatomía & histología , Ballenas/anatomía & histología , Animales , Hueso Esponjoso/fisiología , Buceo/fisiología , Delfines/fisiología , Columna Vertebral/fisiología , Natación/fisiología , Ballenas/fisiología
19.
PLoS One ; 15(8): e0237042, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813735

RESUMEN

The largest dinosaurs were enormous animals whose body mass placed massive gravitational loads on their skeleton. Previous studies investigated dinosaurian bone strength and biomechanics, but the relationships between dinosaurian trabecular bone architecture and mechanical behavior has not been studied. In this study, trabecular bone samples from the distal femur and proximal tibia of dinosaurs ranging in body mass from 23-8,000 kg were investigated. The trabecular architecture was quantified from micro-computed tomography scans and allometric scaling relationships were used to determine how the trabecular bone architectural indices changed with body mass. Trabecular bone mechanical behavior was investigated by finite element modeling. It was found that dinosaurian trabecular bone volume fraction is positively correlated with body mass similar to what is observed for extant mammalian species, while trabecular spacing, number, and connectivity density in dinosaurs is negatively correlated with body mass, exhibiting opposite behavior from extant mammals. Furthermore, it was found that trabecular bone apparent modulus is positively correlated with body mass in dinosaurian species, while no correlation was observed for mammalian species. Additionally, trabecular bone tensile and compressive principal strains were not correlated with body mass in mammalian or dinosaurian species. Trabecular bone apparent modulus was positively correlated with trabecular spacing in mammals and positively correlated with connectivity density in dinosaurs, but these differential architectural effects on trabecular bone apparent modulus limit average trabecular bone tissue strains to below 3,000 microstrain for estimated high levels of physiological loading in both mammals and dinosaurs.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Hueso Esponjoso/fisiología , Dinosaurios/anatomía & histología , Animales , Anisotropía , Fenómenos Biomecánicos , Densidad Ósea/fisiología , Huesos/anatomía & histología , Fuerza Compresiva/fisiología , Simulación por Computador , Fémur/anatomía & histología , Análisis de Elementos Finitos , Fósiles , Procesamiento de Imagen Asistido por Computador/métodos , Mamíferos/anatomía & histología , Estrés Mecánico , Tibia/anatomía & histología , Microtomografía por Rayos X/métodos
20.
Ann Anat ; 232: 151583, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32810613

RESUMEN

PURPOSE: It is necessary to correlate cancellous bone patterns with cone beam computed tomography (CBCT) images, but this has not been done to date. The goal of this study was to establish how the superior wall of the mandibular canal (MC) on CBCT images correlates with the cancellous bone around the MC on gross anatomical findings. METHODS: Twenty sides from 10 dry mandibles derived from six females and four males were used for this study. In order to observe the MC distally, the specimen was prepared by the method used in our previous study. The cancellous bone around the MC was observed and classified into three types: type I (trabecular pattern), type II (osteoporotic pattern), and type III (dense/irregular pattern). The mandibles were examined with CBCT and the superior wall of the MC on CBCT was scored as visible or non-visible. Finally, the scores (visible or non-visible) were compared to the type by gross observation. RESULTS: For gross observation, a total of 80 areas were available for this study. The data were added to those from our previous study. As a result, 155 areas on 40 sides were analyzed. In dentulous sections, types I, II, and III were found in 55.8%, 20.9%, and 23.3%, respectively. In edentulous sections, the corresponding percentages were 25.0%, 41.1%, and 33.9%, respectively. The dentulous sections was more likely than edentulous to have a type I mandible in both sexes. More females than males had type II (osteoporotic) mandibles. When the superior wall of the MC was non-visible on CBCT, the cancellous bone was type II in 80%. CONCLUSIONS: We believe the results can easily be applied to preoperative diagnosis with not only radiological but also anatomical evidence. This classification now necessitates clinical trials for further evidence.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Mandíbula/anatomía & histología , Anciano , Anciano de 80 o más Años , Hueso Esponjoso/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Arcada Edéntula/diagnóstico por imagen , Arcada Edéntula/patología , Masculino , Mandíbula/diagnóstico por imagen , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...