RESUMEN
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.
Asunto(s)
Oseointegración , Técnicas de Cultivo de Tejidos , Titanio , Humanos , Técnicas de Cultivo de Tejidos/métodos , Microtomografía por Rayos X , Huesos/citología , Materiales Biocompatibles , Prótesis e Implantes , Hueso Esponjoso/citologíaRESUMEN
It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.
Asunto(s)
Hueso Esponjoso/citología , Quimiocina CCL2/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Condicionamiento Físico Animal , Animales , Hueso Esponjoso/metabolismo , Movimiento Celular , Quimiocina CCL2/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismoRESUMEN
The effects of treadmill interval training (IT) and free-fall exercise were evaluated on bone parameters including osteocyte related characteristics. Thirty-eight 4-month-old male Wistar rats were randomly divided into a control (C) group and exercise groups: IT, 10 free-fall impacts/day with a 10-s (FF10) or 20-s interval between drops (FF20), 5 days/week, for 9 weeks. We assessed bone mineral density (BMD); microarchitecture by µCT; mechanical strength by a 3-point bending test; density and occupancy of the osteocyte lacunae by toluidine blue staining; osteocalcin and NTx systemic levels by ELISA; and bone tissue Sost messenger RNA (mRNA) expression by RT-PCR. NTx levels were significantly lower in exercise groups as compared with the C group. In exercise groups the Sost mRNA expression was significantly lower than in C. Tb.N was significantly higher for IT and FF20 compared with the C group. Tb.Sp was significantly lower in FF10 compared with the C group. Both IT and FF20 were associated with higher tibial lacunar density as compared with FF10. compared with FF10, IT fat mass was lower, while tibial osteocyte lacunae occupancy and systemic osteocalcin level were higher. All exercise modes were efficient in reducing bone resorption. Both IT and free-fall impact with appropriate recovery periods, which may be beneficial for bone health and osteocyte-related characteristics. Novelty: Interval training is beneficial for bone mineral density. Exercises decreased both bone resorption and inhibition of bone formation (Sost mRNA). Longer interval recovery time favors osteocyte lacunae density.
Asunto(s)
Densidad Ósea , Proteínas Morfogenéticas Óseas/genética , Hueso Esponjoso/citología , Marcadores Genéticos/genética , Osteocalcina/sangre , Osteocitos/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Animales , Fenómenos Biomecánicos , Composición Corporal , Resorción Ósea , Hueso Esponjoso/anatomía & histología , Recuento de Células , Colágeno Tipo I/análisis , Expresión Génica , Masculino , Osteocitos/citología , Osteogénesis/fisiología , Péptidos/análisis , Ejercicio Pliométrico , ARN Mensajero/genética , Distribución Aleatoria , Ratas Wistar , Carrera/fisiología , Resistencia a la TracciónRESUMEN
Bone allograft is widely used to treat large bone defects or complex fractures. However, processing methods can significantly compromise allograft osteogenic activity. Adjuvants that can restore the osteogenic activity of processed allograft should improve clinical outcomes. In this study, zinc was tested as an adjuvant to increase the osteogenic activity of human allograft in a Rag2 null rat femoral defect model. Femoral defects were treated with human demineralized bone matrix (DBM) mixed with carboxy methyl cellulose containing ZnCl2 (0, 75, 150, 300 µg) or Zn stearate (347 µg). Rat femur defects treated with DBM-ZnCl2 (75 µg) and DBM-Zn stearate (347 µg) showed increased calcified tissue in the defect site compared to DBM alone. Radiograph scoring and µCT (microcomputed tomography) analysis showed an increased amount of bone formation at the defects treated with DBM-Zn stearate. Use of zinc as an adjuvant was also tested using human cancellous bone chips. The bone chips were soaked in ZnCl2 solutions before being added to defect sites. Zn adsorbed onto the chips in a time- and concentration-dependent manner. Rat femur defects treated with Zn-bound bone chips had more new bone in the defects based on µCT and histomorphometric analyses. The results indicate that zinc supplementation of human bone allograft improves allograft osteogenic activity in the rat femur defect model.
Asunto(s)
Aloinjertos/inmunología , Hueso Esponjoso/citología , Osteogénesis/fisiología , Zinc/metabolismo , Animales , Matriz Ósea/trasplante , Trasplante Óseo/métodos , Hueso Esponjoso/inmunología , Fémur/metabolismo , Humanos , Ratas , Trasplante Homólogo/métodosRESUMEN
Collagenated porcine-derived bone graft materials exhibit osteoconductive properties and the development of different formulations intends to enhance bone regeneration. This study aims to evaluate bone healing in a rabbit cancellous bone defect in response to grafting with different physicochemical forms of heterologous porcine bone. Twenty-six adult male New Zealand White rabbits received two critical size femoral bone defects per animal (n = 52), each randomly assigned to one of the five tested materials (Apatos, Gen-Os, mp3, Putty, and Gel 40). Animals were sacrificed at 15- and 30-days post-surgery. Qualitative and quantitative (new bone, particle and connective tissue percentages) histological analyses were performed. Histomorphometry showed statistically significant differences in all evaluated parameters between mp3 and both Putty and Gel 40 groups, regardless of the timepoint (p < 0.05). Moreover, statistical differences were observed between Apatos and both Putty (p = 0.014) and Gel 40 (p = 0.007) groups, at 30 days, in regard to particle percentage. Within each group, regarding new bone formation, mp3 showed significant differences (p = 0.028) between 15 (40.93 ± 3.49%) and 30 (52.49 ± 11.04%) days. Additionally, intragroup analysis concerning the percentage of particles revealed a significant reduction in particle occupied area from 15 to 30 days in mp3 and Gen-Os groups (p = 0.009). All mp3, Gen-Os and Apatos exhibited promising results in terms of new bone formation, thus presenting suitable alternatives to be used in bone regeneration.
Asunto(s)
Materiales Biocompatibles/química , Sustitutos de Huesos/química , Trasplante Óseo , Hueso Esponjoso/cirugía , Xenoinjertos/trasplante , Osteogénesis , Tibia/cirugía , Animales , Hueso Esponjoso/citología , Masculino , Conejos , PorcinosRESUMEN
Type 1 diabetes mellitus (T1DM) is characterized by hyperglycemia manifesting as insufficient insulin. Toll-like receptor-4 (TLR4) has been implicated in diabetic osteoporosis. We established streptozotocin (STZ)-induced diabetic mouse model and examined the relevant osteoporosis factors in different experimental groups, the WT-CON group, WT-STZ group, KO-CON group and KO-STZ group, respectively. No obvious protection of TLR4 deletion was shown in mice with diabetes. There was no obvious difference in the body weight or blood glucose concentration between WT-STZ group and KO-STZ group. However, TLR4 deletion reduced the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Furthermore, TLR4 knockout attenuated STZ-induced diabetic osteoporosis via inhibiting osteoblasts and pre-inflammation factors mediated by the NF-κB pathway. TLR4 deletion ameliorated STZ-induced diabetic osteoporosis in mice, and TLR4 may be used as a potential therapeutic target for the treatment of diabetic osteoporosis.
Asunto(s)
Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Osteoporosis/inducido químicamente , Osteoporosis/genética , Estreptozocina , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Animales , Hueso Esponjoso/citología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Diferenciación Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Masculino , Ratones , Terapia Molecular Dirigida , Factor 88 de Diferenciación Mieloide/metabolismo , Osteoclastos/citología , Osteoclastos/patología , Osteoporosis/complicaciones , Osteoporosis/patología , Ligando RANK/metabolismo , Tibia/citología , Tibia/diagnóstico por imagen , Tibia/patología , Microtomografía por Rayos XRESUMEN
Osteocytes are thought to be the mechanosensors of bone by sensing mechanical loads imposed upon the bone and transmitting these signals to the other bone cells to initiate bone modeling and remodeling. The location of osteocytes deep within bone is ideal for their function. However, this location makes the study of osteocytes in vivo technically difficult. There are several methods for obtaining and culturing primary osteocytes for in vitro experiments and ex vivo observation. In this chapter, several proven methods are discussed including the isolation of avian osteocytes from chicks and osteocytes from calvaria and long bones of young mice. A detailed protocol for the isolation of osteocytes from hypermineralized bone of mature and aged animals is provided. In addition, a modified version of this protocol that can be used to isolate osteocytes from human trabecular bone is described.
Asunto(s)
Hueso Esponjoso/citología , Técnicas de Cultivo de Célula/métodos , Osteocitos/citología , Cráneo/citología , Animales , Células Cultivadas , Pollos , Humanos , RatonesRESUMEN
Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2-deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2fl/fl and Runx2fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2fl/fl and Runx2fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.
Asunto(s)
Transdiferenciación Celular/genética , Condrocitos/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/fisiología , Osteogénesis/genética , Factores de Edad , Animales , Apoptosis/genética , Hueso Esponjoso/citología , Hueso Esponjoso/embriología , Hueso Esponjoso/crecimiento & desarrollo , Cartílago/irrigación sanguínea , Cartílago/citología , Cartílago/metabolismo , Supervivencia Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Periostio/citología , Periostio/embriología , Periostio/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Spine degenerative conditions are becoming increasingly prevalent, affecting about 5.7% of the population in Europe, resulting in a significant reduction of life's quality. Up to now, many materials have been used in manufacturing cage implants, used as graft substitutes, to achieve immediate and long-term spinal fixation. Particularly, titanium and its alloys are emerging as valuable candidates to develop new types of cages. The aim of this in vitro study was to evaluate the adhesion, proliferation and osteogenic differentiation of adipose derived mesenchymal stem cells (ASCs) seeded on trabecular titanium cages. ASCs adhered, proliferated and produced an abundant extracellular matrix during the 3 weeks of culture. In the presence of osteogenic medium, ASCs differentiated into osteoblast-like cells: the expression of typical bone genes, as well as the alkaline phosphatase activity, was statistically higher than in controls. Furthermore, the dispersive spectrometry microanalysis showed a marked increase of calcium level in cells grown in osteogenic medium. Plus, our preliminary data about osteoinduction suggest that this titanium implant has the potential to induce the ASCs to produce a secretome able to trigger a shift in the ASCs phenotype, possibly towards the osteogenic differentiation, as illustrated by the qRT-PCR and ALP biochemical assay results. The trabecular porous organization of these cages is rather similar to the cancellous bone structure, thus allowing the bone matrix to colonize it efficiently; for these reasons we can conclude that the architecture of this cage may play a role in modulating the osteoinductive capabilities of the implant, thus encouraging its engagement in in vivo studies for the treatment of spinal deformities and diseases.
Asunto(s)
Tejido Adiposo/citología , Hueso Esponjoso/citología , Células Madre Mesenquimatosas/citología , Técnicas de Cultivo de Tejidos/métodos , Titanio/química , Anciano , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Persona de Mediana Edad , Osteogénesis , Andamios del TejidoRESUMEN
Artificial in vitro blood production has been presented by recent literature as a necessary and achievable aim. In order to obtain the required hematopoietic stem cells (HSCs) proliferation and differentiation for mature blood cell production, studies have been conducted on using either cytokine-rich conditions or co-culturing with other cells. Alternatively, three-dimensional (3D) cell culture environments (such as tissue scaffolds) have been shown to affect cell morphology, proliferation and differentiation. Therefore, we investigated decellularized cancellous bones (DCBs), which provide 3D structure and natural extracellular matrix, as a scaffold for preserving and growing HSC niches in vitro. Additionally, we optimized a cell seeding method using mesenchymal stem cells as supporting cells. We discovered that, although adhering only to the top of DCBs when seeded at 37 °C, mesenchymal stem cells adhered to the inside of the scaffold at 4 °C, indicating that the seeding temperature is important to control the adherence ability of stem cells. This, in turn, was revealed to be important for HSC cell seeding on 3D extracellular matrix, and provides the required cell methodology to use DCBs as a great scaffold for blood cell production.
Asunto(s)
Hueso Esponjoso/citología , Temperatura , Andamios del Tejido/química , Animales , Hueso Esponjoso/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Colágeno/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas Wistar , PorcinosRESUMEN
Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow-derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose-derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri-lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up-regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs.
Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Proteómica , Adulto , Hueso Esponjoso/citología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteoma/metabolismo , Grasa Subcutánea/citologíaRESUMEN
In bone tissue engineering, the structure of a scaffold is very important for cell growth and bone regeneration. It is better to make the scaffold resemble the native cancellous bone because natural cancellous bone can promote scaffold revascularization, which then accelerates cell proliferation. This study presents a parameterized design and fabrication method for cranial scaffold construction. A native human cranial sample was first scanned using micro computed tomography (CT), followed by 3D reconstruction, after which the internal structure of the bone trabecula was created. Based on an extracted negative bone trabecula model, the design components of "cavity", "connecting pipe" and "spatial framework" were proposed to describe the scaffold model. Then, by using the parameterized component model and an assembly and deformation algorithm, the bionic scaffold was designed. Its porous distribution, connection, porosity and area size were easily controlled. Finally, a biomaterial scaffold case was fabricated using a gelcasting process, and cell culture testing was performed in vitro to verify the scaffold's biocompatibility. The results show that the scaffold can promote cell growth and that cells accumulate in the form of a mass within three days.
Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Regeneración Ósea , Cráneo/anomalías , Cráneo/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Hueso Esponjoso/citología , Adhesión Celular , Técnicas de Cultivo de Célula , Proliferación Celular , Humanos , Porosidad , Microtomografía por Rayos XRESUMEN
BACKGROUND: What is the right surface for an implant to achieve biological fixation? Surface technologies can play important roles in encouraging interactions between the implant surface and the host bone to achieve osseointegration. Preclinical animal models provide important insight into in vivo performance related to bone ongrowth and implant fixation. METHODS: A large animal model was used to compare the in vivo response of HA and plasma-sprayed titanium coatings in a well-reported adult ovine model to evaluate bone ongrowth in terms of mechanical properties in cortical sites, and histology and histomorphometry in cortical and cancellous sites at 4 and 12 weeks. RESULTS: Titanium plasma-sprayed surfaces outperformed the HA-coated samples in push-out testing in cortical sites while both surfaces supported new bone ongrowth and remodeling in cortical and cancellous sites. CONCLUSIONS: While both HA and Ti plasma provided an osteoconductive surface for bone ongrowth, the Ti plasma provided a more robust bone-implant interface that ideally would be required for load transfer and implant stability in the longer term.
Asunto(s)
Fenómenos Biomecánicos/fisiología , Placas Óseas , Hueso Esponjoso/fisiología , Hueso Esponjoso/cirugía , Hueso Cortical/fisiología , Hueso Cortical/cirugía , Animales , Hueso Esponjoso/citología , Hueso Cortical/citología , Resistencia al Corte/fisiología , Ovinos , TitanioRESUMEN
PURPOSE OF REVIEW: Skeletal stem cells (SSCs) are considered to play important roles in bone development and repair. These cells have been historically defined by their in vitro potential for self-renewal and differentiation into "trilineage" cells; however, little is known about their in vivo identity. Here, we discuss recent progress on SSCs and how they potentially contribute to bone development and repair. RECENT FINDINGS: Bone is composed of diverse tissues, which include cartilage and its perichondrium, cortical bone and its periosteum, and bone marrow and its trabecular bone and stromal compartment. We are now at the initial stage of understanding the precise identity of SSCs in each bone tissue. The emerging concept is that functionally dedicated SSCs are encased by their own unique cellular and extracellular matrix microenvironment, and locally support its own compartment. Diverse groups of SSCs are likely to work in concert to achieve development and repair of the highly functional skeletal organ.
Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Desarrollo Óseo/fisiología , Regeneración Ósea/fisiología , Diferenciación Celular , Adipocitos/citología , Médula Ósea , Células de la Médula Ósea/citología , Hueso Esponjoso/citología , Cartílago/citología , Linaje de la Célula , Condrocitos/citología , Hueso Cortical/citología , Placa de Crecimiento/citología , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citologíaRESUMEN
BACKGROUND: Quantitative ultrasound has been used for the assessment of cancellous bone status. The attenuation mechanisms of cancellous bone, however, have not been well understood, because the microstructure of cancellous bone is significantly inhomogeneous and the interaction between ultrasound and the microstructure of cancellous bone is complex. In this study, a theoretical approach was applied to investigate the influence of the microstructure of cancellous bone on ultrasonic attenuation. RESULTS: The scattering from a trabecular cylinder was significantly angle dependent. The dependencies of the ultrasonic attenuation on frequency, scatterer size, and porosity were explored from the theoretical calculation. Prediction results showed that the ultrasonic attenuation increased with the increase of frequency and decreased linearly with the increase in porosity, and the broadband ultrasound attenuation decreased with the increase in porosity. All these predicted trends were consistent with published experimental data. In addition, our model successfully explained the principle of broadband ultrasound attenuation measurement (i.e., the attenuation over the frequency range 0.3-0.65 MHz was approximately linearly proportional to frequency) by considering the contributions of scattering and absorption to attenuation. CONCLUSION: The proposed theoretical model may be a potentially valuable tool for understanding the interaction of ultrasound with cancellous bone.
Asunto(s)
Hueso Esponjoso/citología , Hueso Esponjoso/diagnóstico por imagen , Modelos Biológicos , Procesamiento de Imagen Asistido por Computador , UltrasonografíaRESUMEN
BACKGROUND: The protective effect of melatonin against bone metabolism imbalance in osteoporosis (OP) induced by drugs such as retinoic acid (RA) is unclear. The aim of this study was to explore the role of melatonin in bone destruction based on a mouse model. METHODS: RA-induced OP model mice were established. To assess the effect of melatonin on these mice, micro-CT was used to characterize the trabecular structure of normal mice and those treated with RA (model), RA + low-dose melatonin (Mlt-L), RA + high-dose melatonin (Mlt-H), and RA + alendronate sodium (positive control). The shape of the trabecular bone, the length and diameter of the femoral head and the height and diameter of vertebra(L1) of each group were also measured and the number of osteoclasts was determined by Tartrate-resistant acid phosphatase (TRACP) staining. Meanwhile, the expression of alkaline phosphatase (ALP) was evaluated by immunohistochemistry assays. The differences between groups in terms of liver and kidney oxidation-related indexes and serum and urinary indicators related to bone metabolism were also analyzed. Furthermore, qRT-PCR and western blotting were used to evaluate the effect of melatonin on osteogenic and osteoclastic differentiation in MC3T3-E1 and RAW264.7 cells, respectively. RESULTS: RA induction led to a decrease in the amount and density of trabecular bone, a decrease in the length and diameter of the femur and height, diameter of the vertebra (L1), a decrease in bone mass and density and the expression of ALP, and an increase in the number of osteoclasts. Melatonin treatment alleviated these effects induced by RA, increasing the amount of trabecular bone in OP mice, improving the microstructure of the femur and vertebra(L1) and increasing bone mass bone density and the expression of ALP, as well as decreasing the number of osteoclasts. Additionally, blood and urinary bone metabolism-related indicators showed that melatonin promoted bone formation and inhibited bone resorption. Determination of oxidant and antioxidant biomarkers in the livers and kidneys of the mice revealed that melatonin promoted the antioxidant level and suppressed the level of oxidant molecules in these organs. In vitro, RA promoted osteoclasts and inhibit osteogenesis by increasing oxidative stress levels in the RAW264.7 and MC3T3-E1 cells, but melatonin reversed this effect. Melatonin may, therefore, play a role in the ERK/SMAD and NF-κB pathways. CONCLUSIONS: Melatonin can alleviate bone loss in RA-induced OP model mice, repair the trabecular microstructure, and promote bone formation. These effects may be related to reducing oxidation levels in vivo and vitro through the ERK/SMAD and NF-κB pathways.
Asunto(s)
Remodelación Ósea/efectos de los fármacos , Melatonina/farmacología , Osteoporosis , Tretinoina/efectos adversos , Fosfatasa Alcalina/metabolismo , Animales , Hueso Esponjoso/citología , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Femenino , Fémur/citología , Fémur/efectos de los fármacos , Fémur/metabolismo , Ratones , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7RESUMEN
Biofabrication technologies, including stereolithography and extrusion-based printing, are revolutionizing the creation of complex engineered tissues. The current paradigm in bioprinting relies on the additive layer-by-layer deposition and assembly of repetitive building blocks, typically cell-laden hydrogel fibers or voxels, single cells, or cellular aggregates. The scalability of these additive manufacturing technologies is limited by their printing velocity, as lengthy biofabrication processes impair cell functionality. Overcoming such limitations, the volumetric bioprinting of clinically relevant sized, anatomically shaped constructs, in a time frame ranging from seconds to tens of seconds is described. An optical-tomography-inspired printing approach, based on visible light projection, is developed to generate cell-laden tissue constructs with high viability (>85%) from gelatin-based photoresponsive hydrogels. Free-form architectures, difficult to reproduce with conventional printing, are obtained, including anatomically correct trabecular bone models with embedded angiogenic sprouts and meniscal grafts. The latter undergoes maturation in vitro as the bioprinted chondroprogenitor cells synthesize neo-fibrocartilage matrix. Moreover, free-floating structures are generated, as demonstrated by printing functional hydrogel-based ball-and-cage fluidic valves. Volumetric bioprinting permits the creation of geometrically complex, centimeter-scale constructs at an unprecedented printing velocity, opening new avenues for upscaling the production of hydrogel-based constructs and for their application in tissue engineering, regenerative medicine, and soft robotics.
Asunto(s)
Bioimpresión/métodos , Hueso Esponjoso/citología , Supervivencia CelularRESUMEN
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 -/- ) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 -/- mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 -/- mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 -/- mice. Treatment with ß-glycerophosphate (ß-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 -/- mice. Finally, bone marrow cells from Bif-1 -/- mice showed a significantly higher colony-forming efficacy by the treatment with or without ß-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 -/- mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hueso Esponjoso/metabolismo , Homeostasis , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Hueso Esponjoso/citología , Ratones , Ratones Noqueados , Osteoblastos/citología , Osteoclastos/citología , Ligando RANK/genética , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismoRESUMEN
Recent studies have identified the regulatory mechanism of collagen in bone ossification and resorption. Due to its excellent bio-mimicry property, collagen is used for the treatment of several bone and joint disease such as arthritis, osteoporosis, and osteopenia. In bone, the biological action of collagen is highly influenced by the interactions of other bone materials such as glycosaminoglycan and minerals. In view of the above perceptions, collagen was crosslinked with chitosan, hydroxyapatite (H), and chondroitin sulfate (Cs), to produce a natural bone-like 3D structure and to evaluate its effect on bone homeostasis using bone marrow mesenchymal stem cells, osteoblast, and bone marrow macrophages. The XRD and micro-CT data confirmed the arrangement of H crystallites in the chitosan-collagen-H-Cs (CCHCs) three-dimensional (3D)-matrix and the three-dimensional structure of the matrix. The stimulatory osteoblastogenic and exploitive osteoclastogenic activity of 3D-matrices were identified using differentiated osteoblasts and osteoclasts, respectively. Besides, osteogenic progenitor's paracrine cues for osteoclastogenesis showed that the differentiated osteoblast secreted higher levels of RANKL to support osteoclastogenesis, and the effect was downregulated by the CCHCs 3D-matrix. From that, it was hypothesized that the morphology of the CCHCs 3D-matrix resembles trabecular bone, which enhances bone growth, limits bone resorption, and could be a novel biomaterial for bone tissue engineering.
Asunto(s)
Hueso Esponjoso/citología , Diferenciación Celular/efectos de los fármacos , Quitosano/farmacología , Colágeno/farmacología , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ligando RANK/farmacología , Animales , Calcio/metabolismo , Línea Celular , Quitosano/química , Colágeno/química , Regulación hacia Abajo/efectos de los fármacos , Femenino , Macrófagos/citología , Macrófagos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/ultraestructura , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reología , TilapiaRESUMEN
Bone regenerative therapies have been explored using various biomaterial systems. Notably, collagen biomineralisation is believed to be essential for promoting bone regeneration. However, ideal bone repair materials with an appropriate mineralised matrix, superior osteogenic activity with early vascularisation, and recellularisation properties are still needed. This study aimed to develop a method to subject the decellularised cancellous bone matrix (DCBM) to ultrasound to obtain specific demineralisation to investigate the effects of DCBM with different degrees of mineralisation on proliferation and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (BMSCs) and in repairing femoral bone defects in rabbits. We established an optimised native DCBM mineralisation ECM scaffold for bone regeneration. Upon complete decellularisation of the cancellous bone matrix, DCBMs with specific degrees of mineralisation were obtained. We comprehensively evaluated their bioactive components, minimal immunogenicity, ultra-micro-structural mechanical properties, and degree of mineralisation. Furthermore, specific mineralised DCBMs (obtained by low-temperature rapid ultrasound for 4 and 8 h) had prominent effects in promoting the osteogenic differentiation of BMSCs in vitro. Moreover, more newly formed trabeculae, vessels, and endochondral bone were also detected in the aforementioned groups during early-stage bone repair in vivo. The underlying mechanism might be mineralisation-related regulation and ultra-micro-structural mechanical properties. Thus, the present study shows that specific demineralised DCBM obtained under optimal conditions had superior properties to those of unmineralised or completely demineralised DCBM by promoting MSC osteogenic differentiation and initiating endochondral bone formation and de novo osteogenesis.