Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
J Cell Sci ; 136(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039101

RESUMEN

Finely tuned regulation of transport protein localization is vital for epithelial function. The Na+-HCO3- co-transporter NBCn1 (also known as SLC4A7) is a key contributor to epithelial pH homeostasis, yet the regulation of its subcellular localization is not understood. Here, we show that a predicted N-terminal ß-sheet and short C-terminal α-helical motif are essential for NBCn1 plasma membrane localization in epithelial cells. This localization was abolished by cell-cell contact disruption, and co-immunoprecipitation (co-IP) and proximity ligation (PLA) revealed NBCn1 interaction with E-cadherin and DLG1, linking it to adherens junctions and the Scribble complex. NBCn1 also interacted with RhoA and localized to lamellipodia and filopodia in migrating cells. Finally, analysis of native and GFP-tagged NBCn1 localization, subcellular fractionation, co-IP with Arl13B and CEP164, and PLA of NBCn1 and tubulin in mitotic spindles led to the surprising conclusion that NBCn1 additionally localizes to centrosomes and primary cilia in non-dividing, polarized epithelial cells, and to the spindle, centrosomes and midbodies during mitosis. We propose that NBCn1 traffics between lateral junctions, the leading edge and cell division machinery in Rab11 endosomes, adding new insight to the role of NBCn1 in cell cycle progression.


Asunto(s)
Membrana Celular , Centrosoma , Cilios , Simportadores de Sodio-Bicarbonato , Huso Acromático , Humanos , Animales , Ratas , Membrana Celular/química , Cilios/química , Centrosoma/química , Huso Acromático/química , Simportadores de Sodio-Bicarbonato/análisis , Simportadores de Sodio-Bicarbonato/metabolismo , Ciclo Celular , AMP Cíclico/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(33): e2206398119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960844

RESUMEN

During cell division, cross-linking motors determine the architecture of the spindle, a dynamic microtubule network that segregates the chromosomes in eukaryotes. It is unclear how motors with opposite directionality coordinate to drive both contractile and extensile behaviors in the spindle. Particularly, the impact of different cross-linker designs on network self-organization is not understood, limiting our understanding of self-organizing structures in cells but also our ability to engineer new active materials. Here, we use experiment and theory to examine active microtubule networks driven by mixtures of motors with opposite directionality and different cross-linker design. We find that although the kinesin-14 HSET causes network contraction when dominant, it can also assist the opposing kinesin-5 KIF11 to generate extensile networks. This bifunctionality results from HSET's asymmetric design, distinct from symmetric KIF11. These findings expand the set of rules underlying patterning of active microtubule assemblies and allow a better understanding of motor cooperation in the spindle.


Asunto(s)
Cinesinas , Microtúbulos , Proteínas Oncogénicas , Huso Acromático , División Celular , Humanos , Cinesinas/química , Cinesinas/fisiología , Microtúbulos/química , Microtúbulos/fisiología , Proteínas Oncogénicas/química , Proteínas Oncogénicas/fisiología , Huso Acromático/química , Huso Acromático/fisiología
3.
Methods Enzymol ; 667: 507-534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525552

RESUMEN

Budding uninhibited by benzimidazole 1-related protein 1 (BUBR1) is a mitotic checkpoint (better known as the spindle assembly checkpoint) protein that forms part of an inhibitory complex required to delay mitosis when errors occur in the attachment between chromosomes and the mitotic spindle. If these errors remain uncorrected, it could result in unequal distribution of genetic material to each of the nascent daughter cells, leading to potentially disastrous consequences at both the cellular and organismal level. In some higher eukaryotes including vertebrates, BUBR1 has a C-terminal kinase fold that is largely thought to be inactive, whereas in many species this domain has been lost through evolution and the truncated protein is known as mitotic arrest deficient 3 (MAD3). Here we present advice and practical considerations for the design of experiments, their analysis and interpretation to study the functions of the vertebrate BUBR1 during mitosis with emphasis on analysis implicating the pseudokinase domain.


Asunto(s)
Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular , Animales , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/química , Huso Acromático/genética , Huso Acromático/metabolismo
4.
Curr Biol ; 32(6): 1247-1261.e6, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35139359

RESUMEN

Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic ß-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and ß-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.


Asunto(s)
Microtúbulos , Naegleria , Huso Acromático , Tubulina (Proteína) , Eucariontes , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/fisiología , Mitosis , Naegleria/citología , Naegleria/genética , Huso Acromático/química , Huso Acromático/genética , Tubulina (Proteína)/genética
5.
Elife ; 112022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029146

RESUMEN

Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Microtúbulos/fisiología , Huso Acromático/química , Animales , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
6.
Nat Commun ; 12(1): 7157, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887424

RESUMEN

A functional mitotic spindle is essential for accurate chromosome congression and segregation during cell proliferation; however, the underlying mechanisms of its assembly remain unclear. Here we show that NuMA regulates this assembly process via phase separation regulated by Aurora A. NuMA undergoes liquid-liquid phase separation during mitotic entry and KifC1 facilitates NuMA condensates concentrating on spindle poles. Phase separation of NuMA is mediated by its C-terminus, whereas its dynein-dynactin binding motif also facilitates this process. Phase-separated NuMA droplets concentrate tubulins, bind microtubules, and enrich crucial regulators, including Kif2A, at the spindle poles, which then depolymerizes spindle microtubules and promotes poleward spindle microtubule flux for spindle assembly and structural dynamics. In this work, we show that NuMA orchestrates mitotic spindle assembly, structural dynamics and function via liquid-liquid phase separation regulated by Aurora A phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Huso Acromático/química , Huso Acromático/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Huso Acromático/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Curr Biol ; 31(12): 2495-2506.e4, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33848456

RESUMEN

The proper organization of the microtubule-based spindle during cell division requires the collective activity of many different proteins. These include non-motor microtubule-associated proteins (MAPs), whose functions include crosslinking microtubules to regulate filament sliding rates and assemble microtubule arrays. One such protein is PRC1, an essential MAP that has been shown to preferentially crosslink overlapping antiparallel microtubules at the spindle midzone. PRC1 has been proposed to act as a molecular brake, but insight into the mechanism of how PRC1 molecules function cooperatively to resist motor-driven microtubule sliding and to allow for the formation of stable midzone overlaps remains unclear. Here, we employ a modified microtubule gliding assay to rupture PRC1-mediated microtubule pairs using surface-bound kinesins. We discovered that PRC1 crosslinks always reduce bundled filament sliding velocities relative to single-microtubule gliding rates and do so via two distinct emergent modes of mechanical resistance to motor-driven sliding. We term these behaviors braking and coasting, where braking events exhibit substantially slowed microtubule sliding compared to coasting events. Strikingly, braking behavior requires the formation of two distinct high-density clusters of PRC1 molecules near microtubule tips. Our results suggest a cooperative mechanism for PRC1 accumulation when under mechanical load that leads to a unique state of enhanced resistance to filament sliding and provides insight into collective protein ensemble behavior in regulating the mechanics of spindle assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/química , Huso Acromático/metabolismo
8.
Dev Cell ; 56(7): 1000-1013.e6, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33725482

RESUMEN

Lysosome-related organelles (LROs) are endosomal compartments carrying tissue-specific proteins, which become enlarged in Chediak-Higashi syndrome (CHS) due to mutations in LYST. Here, we show that Drosophila Mauve, a counterpart of LYST, suppresses vesicle fusion events with lipid droplets (LDs) during the formation of yolk granules (YGs), the LROs of the syncytial embryo, and opposes Rab5, which promotes fusion. Mauve localizes on YGs and at spindle poles, and it co-immunoprecipitates with the LDs' component and microtubule-associated protein Minispindles/Ch-TOG. Minispindles levels are increased at the enlarged YGs and diminished around centrosomes in mauve-derived mutant embryos. This leads to decreased microtubule nucleation from centrosomes, a defect that can be rescued by dominant-negative Rab5. Together, this reveals an unanticipated link between endosomal vesicles and centrosomes. These findings establish Mauve/LYST's role in regulating LRO formation and centrosome behavior, a role that could account for the enlarged LROs and centrosome positioning defects at the immune synapse of CHS patients.


Asunto(s)
Centrosoma/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Proteínas de Drosophila/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteínas de Transporte Vesicular/fisiología , Animales , Línea Celular , Centrosoma/química , Síndrome de Chediak-Higashi , Gránulos Citoplasmáticos/química , Drosophila/química , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/análisis , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Humanos , Lisosomas , Proteínas Asociadas a Microtúbulos/genética , Mutación , Oocitos/química , Huso Acromático/química , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
9.
Commun Biol ; 4(1): 180, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568771

RESUMEN

Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cinesinas/química , Cinesinas/genética , Cinética , Cadenas de Markov , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/química , Microtúbulos/genética , Modelos Teóricos , Complejos Multiproteicos , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Huso Acromático/química , Huso Acromático/genética , Procesos Estocásticos , Sus scrofa , Tubulina (Proteína)/química
10.
Elife ; 92020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966209

RESUMEN

The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.


Asunto(s)
Caenorhabditis elegans , Tamaño de la Célula , Microtúbulos , Huso Acromático , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Evolución Molecular , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Fenotipo , Huso Acromático/química , Huso Acromático/genética , Huso Acromático/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(28): 16154-16159, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601228

RESUMEN

The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.


Asunto(s)
Metafase/fisiología , Huso Acromático/fisiología , Animales , Fenómenos Biomecánicos , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Elasticidad , Cristales Líquidos , Metafase/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Mitosis , Huso Acromático/química , Huso Acromático/efectos de los fármacos , Tensión Superficial , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis
12.
Structure ; 28(7): 820-829.e6, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413290

RESUMEN

Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein. Structural studies show that NuMA contains a hook domain contacting directly LIC1 and LIC2 chains through a conserved hydrophobic patch shared among other Hook adaptors. In addition, we identify a LIC-binding motif within the coiled-coil region of NuMA that is homologous to CC1-boxes. Analysis of mitotic cells revealed that both LIC-binding sites of NuMA are essential for correct spindle placement and cell division. Collectively, our evidence depicts NuMA as the dynein-activating adaptor acting in the mitotic processes of spindle organization and positioning.


Asunto(s)
Proteínas de Ciclo Celular/química , Dineínas/química , Huso Acromático/química , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Unión Proteica , Huso Acromático/metabolismo
13.
J Vis Exp ; (153)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31789312

RESUMEN

We describe a modification of an established method to determine microtubule dynamics in living cells. The protocol is based on the expression of a genetically encoded marker for the positive ends of microtubules (EB3 labelled with tdTomato fluorescent protein) and high-speed, high-resolution, live-cell imaging using spinning disk confocal microscopy. Cell cycle synchronization and increased density of microtubules are achieved by inhibiting centrosomal separation in mitotic cells, and analysis of growth is performed using open-source U-Track software. The use of a bright and red-shifted fluorescent protein, in combination with the lower laser power and reduced exposure time required for spinning disk microscopy reduce phototoxicity and the probability of light-induced artifacts. This allows for imaging a larger number of cells in the same preparation while maintaining the cells in a growth medium under standard culture conditions. Because the analysis is performed in a supervised automatic fashion, the results are statistically robust and reproducible.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Microtúbulos/fisiología , Huso Acromático/fisiología , Células HeLa , Humanos , Proteínas Luminiscentes/análisis , Microscopía Confocal/métodos , Microtúbulos/química , Huso Acromático/química , Proteína Fluorescente Roja
14.
Annu Rev Cell Dev Biol ; 35: 29-54, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31394046

RESUMEN

Microtubules are core components of the cytoskeleton and serve as tracks for motor protein-based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type-specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.


Asunto(s)
Microtúbulos/metabolismo , Animales , Polaridad Celular , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Proteínas Motoras Moleculares/metabolismo , Transporte de Proteínas , Huso Acromático/química , Huso Acromático/metabolismo
15.
Cell ; 175(3): 796-808.e14, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340043

RESUMEN

During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Huso Acromático/metabolismo , Animales , Humanos , Cinesinas/química , Microtúbulos/química , Células Sf9 , Huso Acromático/química , Spodoptera
16.
Trends Cell Biol ; 28(11): 896-910, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30093097

RESUMEN

The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.


Asunto(s)
Huso Acromático/química , Huso Acromático/metabolismo , Animales , Cromosomas/metabolismo , Humanos , Mitosis
17.
J Cell Biol ; 217(7): 2417-2428, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29875259

RESUMEN

Microtubules (MTs) must be generated from precise locations to form the structural frameworks required for cell shape and function. MTs are nucleated by the γ-tubulin ring complex (γ-TuRC), but it remains unclear how γ-TuRC gets to the right location. Augmin has been suggested to be a γ-TuRC targeting factor and is required for MT nucleation from preexisting MTs. To determine augmin's architecture and function, we purified Xenopus laevis augmin from insect cells. We demonstrate that augmin is sufficient to target γ-TuRC to MTs by in vitro reconstitution. Augmin is composed of two functional parts. One module (tetramer-II) is necessary for MT binding, whereas the other (tetramer-III) interacts with γ-TuRC. Negative-stain electron microscopy reveals that both tetramers fit into the Y-shape of augmin, and MT branching assays reveal that both are necessary for MT nucleation. The finding that augmin can directly bridge MTs with γ-TuRC via these two tetramers adds to our mechanistic understanding of how MTs can be nucleated from preexisting MTs.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Asociadas a Microtúbulos/química , Huso Acromático/genética , Tubulina (Proteína)/química , Animales , Proteínas de Ciclo Celular/ultraestructura , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Centro Organizador de los Microtúbulos/química , Microtúbulos/química , Microtúbulos/genética , Unión Proteica , Conformación Proteica , Huso Acromático/química , Tubulina (Proteína)/genética , Xenopus laevis/genética
18.
Annu Rev Biophys ; 47: 655-673, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29792816

RESUMEN

The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.


Asunto(s)
Metafase/genética , Huso Acromático/química , Humanos
19.
J Cell Sci ; 131(10)2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29669740

RESUMEN

Correct spindle orientation is achieved through signaling pathways that provide a molecular link between the cell cortex and spindle microtubules in an F-actin-dependent manner. A conserved cortical protein complex, composed of LGN (also known as GPSM2), NuMA (also known as NUMA1) and dynein-dynactin, plays a key role in establishing proper spindle orientation. It has also been shown that the actin-binding protein MISP and the ERM family, which are activated by lymphocyte-oriented kinase (LOK, also known as STK10) and Ste20-like kinase (SLK) (hereafter, SLK/LOK) in mitosis, regulate spindle orientation. Here, we report that MISP functions downstream of the ERM family member ezrin and upstream of NuMA to allow optimal spindle positioning. We show that MISP directly interacts with ezrin and that SLK/LOK-activated ezrin ensures appropriate cortical MISP levels in mitosis by competing with MISP for actin-binding sites at the cell cortex. Furthermore, we found that regulation of the correct cortical MISP levels, by preventing its excessive accumulation, is essential for crescent-like polarized NuMA localization at the cortex and, as a consequence, leads to highly dynamic astral microtubules. Our results uncover how appropriate MISP levels at the cortex are required for proper NuMA polarization and, therefore, an optimal placement of the mitotic spindle within the cell.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , Antígenos Nucleares/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Matriz Nuclear/genética , Fosfoproteínas/genética , Unión Proteica , Huso Acromático/química , Huso Acromático/genética
20.
Elife ; 72018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517484

RESUMEN

The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas del Citoesqueleto/genética , Mitosis/genética , Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/química , Dominio Catalítico/genética , Proteínas del Citoesqueleto/química , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Plásmidos/genética , Unión Proteica , Conformación Proteica , Huso Acromático/química , Huso Acromático/genética , Sumoilación/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA